[1] 韩志海, 王海军, 白宇,等.超音速等离子喷涂制备细密柱晶结构热障涂层研究进展[J].热喷涂技术, 2011, 3(2): 1-14.
[2] Bai Y, Han Z H, Li H Q, et al. Structure-Property Differences Between Supersonic and Conventional Atmospheric Plasma Sprayed Zirconia Thermal Barrier Coatings[J]. Surface and Coatings Technology, 2011, 205 (13-14): 3833-3839.
[3] He J, Ice M, Lavemia E. Particle Melting Behavior During High-Velocity Oxygen Fuel Thermal Spraying[J]. Journal of Thermal Spray Technology, 2001, 10(1): 83-93.
[4] 韩志海, 王海军, 白宇, 等. 喷涂粒子在等离子体射流中的加热历程及熔化状态研究[J]. 热喷涂技术, 2012, 4(2): 35-43.
[5] Dyshlovenko S, Pateyron B, Pawlowski L, et al. Numerical Simulation of Hydroxyapatite Powder Behavior in Plasma Jet[J]. Surface & Coatings Technology, 2004, 179(1): 110-117.
[6] Ahmed I, Bergman T L. Optimization of Plasma Spray Processing Parameters for Deposition of Nanostructured Powders for Coating Formation[J]. Journal of Fluids Engineering-Transactions of the ASME, 2006, 128(2):394-401.
[7] Li L, Vaidya A, Sampath S. Particle Characterization and Splat Formation of Plasma Sprayed Zirconia[J]. Journal of Thermal Spray Technology, 2006, 15(1): 97-105.
[8] Zhang H, Wei G, Zheng L, et al. Numerical and Experimental Studies of Substrate Melting and Re-Solidification during Thermal Spraying[J]. Journal of Materials Science & Technology, 2003, 19: 137-140.
[9] Xiong H B, Zheng L L, Streibl T, et al. A Critical Assessment of Particle Temperature Distributions During Plasma Spraying: Numerical Studies for YSZ[J]. Plasma Chemistry and Plasma Processing, 2006, 26(1): 53-72.
[10] Xiong H B, Zheng L L, Li L, et al. Melting and Oxidation Behavior of in-Flight Particles in Plasma Spray Process[J]. International Journal of Heat and Mass Transfer, 2005, 48(25-26): 5121-5133.
[11] Joseph D D, Belanger J, Beavers G S. Breakup of a Liquid Drop Suddenly Exposed to a High-Speed Airstream[J]. International Journal of Multiphase Flow, 1999, 25(6-7): 1263-1303.
[12] Zhao W T, Wu J H, Bai Y, et al. Melting Refining Mechanisms in Supersonic Atmospheric Plasma Spraying[J]. Plasma Chemistry Plasma Process, 2013, 32(6):1227-1242.
[13] 胡福胜, 魏正英, 刘伯林, 等. 高效能超音速喷枪内等离子喷涂三维数值分析[J]. 材料科学与工艺, 2013, 21(2): 137-142.
[14] 谭超, 魏正英, 魏培, 等. 内送粉超声速等离子喷涂流场特性分析[J]. 推进技术, 2015, 36(1): 30-36. (TAN Chao, WEI Zheng-ying, WEI Pei, et al. Numerical Analysis of Plasma Flow with Supersonic Plasma Gun[J]. Journal of Propulsion Technology, 2015, 36(1): 30-36.)
[15] 谭超, 魏正英, 魏培, 等. 内送粉超音速等离子喷涂颗粒飞行状态分析[J]. 西安交通大学学报, 2014, 48(6): 91-97. * 收稿日期:2014-12-30;修订日期:2015-03-10。基金项目:国防“九七三”资助项目(613112-K3);西安交通大学金属材料强度国家重点实验室开放研究项目(20131310)。作者简介:谭超,男,硕士生,研究领域为等离子喷涂过程。E-mail: wtanchao@stu.xjtu.edu.cn通讯作者:魏正英,女,教授,博导,研究领域为数字化产品开发与快速制造。E-mail: zywei@ mail.xjtu.edu.cn(编辑:张荣莉)
|