[1] Knezevici D C, Sjolander S A, Praisner T J, et al. Measurements of Secondary Losses in a Turbine Cascade with the Implementation of Non-Axisymmetric Endwall Contouring[J]. Journal of Turbomachinery, 2008, 132(1): 1405-1417.
[2] McIntosh J, MacPherson R, Ingram G, et al. Profiled Endwall Design Using Genetic Algorithms with Different Objective Functions[R]. ASME 2011-GT-45836.
[3] 赵刚剑, 刘波, 那振喆, 等. 采用新型非轴对称端壁优化设计方法提高涡轮性能的数值研究[J]. 推进技术, 2014, 35(5): 597-602. (ZHAO Gang-Jian, LIU Bo, NA Zhen-zhe, et al. Improving the Performance of Turbine Based on a New Optimization Design Method[J]. Journal of Propulsion Technology, 2014, 35(5): 597-602.)
[4] Sauer H, Mu?Ller R, Vogeler K. Reduction of Secondary Flow Losses in Turbine Cascades by Leading Edge Modifications at the Endwall[J]. Journal of Turbomachinery, 2001, 123(2): 207-213.
[5] Becz S, Majewski M S, Langston L S. Leading Edge Modification Effects on Turbine Cascade Endwall Loss[R]. ASME 2003-GT-38898.
[6] Kumar K N, Govardhan M. Secondary Flow Loss Reduction in a Turbine Cascade with a Linearly Varied Height Streamwise Endwall Fence[J]. International Journal of Rotating Machinery, 2011, (1): 1-16.
[7] Philips D B, Cimbala J M, Treaster A L. Suppression of the Wing-Body Junction Vortex by Body Surface Suction[J]. Journal of Aircraft, 1992, 29(1): 118-122.
[8] 郭爽, 陆华伟, 宋彦萍, 等. 端壁附面层抽吸对大转角扩压叶栅旋涡影响的实验研究[J]. 推进技术, 2013, 34(11): 1466-1473. (GUO Shuang, LU Hua-wei, SONG Yan-ping, et al. Experimental Investigation on Effects of Endwall Boundary Layer Suction on Vortex of High-Turning Compressor Cascade[J]. Journal of Propulsion Technology, 2013, 34(11): 1466-1473.)
[9] 扈延林, 唐菲, 赵庆军, 等. 冲压叶栅边界层抽吸处理分析[J]. 推进技术, 2012, 33(3): 356-362. (HU Yan-lin, TANG Fei, ZHAO Qing-jun, et al. Numerical Investigation on the Effect of Boundary Layer Suction in a Ramrotor Cascade[J]. Journal of Propulsion Technology, 2012, 33(3): 356-362.)
[10] Johnson M J, Ravindra K, Andres R. Comparative Study of the Elimination of the Wing Fuselage Junction Vortex by Boundary Layer Suction and Blowing[R]. AIAA 94-0239.
[11] Glezer A, Amitay M. Synthetic Jets[J]. Annual Review of Fluid Mechanics, 2002, 34(1): 503-529.
[12] 张攀峰, 王晋军, 冯立好. 零质量射流技术及其应用研究进展[J]. 中国科学, 2008, 38(3): 321-349.
[13] Zander V, Hecklau M, Nitsche W, et al. Active Flow Control by Means of Synthetic Jets on a Highly Loaded Compressor Cascade[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2011, 225(7): 897-908.
[14] Matejka M, Popelka L, Safarik P, et al. Influence of Active Methods of Flow Control on Compressor Blade Cascade Flow[R]. ASME 2008-GT-51109.
[15] Benini E, Biollo R, Ponza R. Efficiency Enhancement in Transonic Compressor Rotor Blades Using Synthetic Jets: A Numerical Investigation[J]. Applied Energy, 2011, 88(3): 953-962.
[16] Braunscheidel E P, Culley D E, Zaman K B M Q. Application of Synthetic Jets to Reduce Stator Flow Separation in a Low Speed Axial Compressor[J]. AIAA Journal, 2008, 602: 7-11.
[17] 王建明, 马驰, 李明, 等. 合成射流对角区马蹄涡的影响研究[J]. 航空科学技术, 2016, (1): 66-73.
[18] Wang S, Cai L, Zhou X, et al. Numerical Investigation on Effectiveness of Flow Separation Control in Two-Dimensional High-Load Compressor Cascade by Synthetic Jet[J]. Journal of Thermal Science, 2012, 21(5): 441-446.
[19] Zheng XQ, Zhou S, Lu YJ, et al. Flow Control of Annular Compressor Cascade by Synthetic Jets[J]. Journal of Turbomachinery, 2008, 130(2).
[20] 秦勇, 刘华坪, 王若玉, 等. 激励参数对合成射流控制压气机流动分离的影响[J]. 推进技术, 2017, 38(5): 1030-1037. (QIN Yong, LIU Hua-ping, WANG Ruo-yu, et al. Effects of Actuation Parameters on Flow Separation Control in Compressor with Synthetic Jets[J].Journal of Propulsion Technology, 2017, 38(5): 1030-1037.)
[21] Hilfer M, Ingram G, Hogg S. Endwall Profiling with Tip Clearance Flows[R]. ASME 2012-GT-68488.
[22] Mank S, Duerrwaechter L, Hilfer M, et al. Secondary Flows and Fillet Radii in a Linear Turbine Cascade[R]. ASME 2014-GT-25458.
[23] Menter F R, Kuntz M, Langtry R. Ten Years of Industrial Experience with the SST Turbulence Model[J]. Turbulence, Heat and Mass Transfer, 2003, 4(1): 625-632.
[24] Menter F R, Langtry R B, Likki S R, et al. A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation[J]. Journal of Turbomachinery, 2006, 128(3): 413-422.
[25] Langtry R B, Menter F R. Transition Modeling for General CFD Applications in Aeronautics[R]. AIAA 2005-522.
[26] El Ella H M A, Sjolander S A, Praisner T J. Effects of an Upstream Cavity on the Secondary Flow in a Transonic Turbine Cascade[J]. Journal of Turbomachinery, 2012, 134(5).
[27] Kang K J, Kim T, Song S J. Strengths of Horseshoe Vortices Around a Circular Cylinder with an Upstream Cavity[J]. Journal of Mechanical Science and Technology, 2009, 23(7): 1773-1778.
[28] Sieverding C H. Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages[J]. Journal of Engineering for Gas Turbines and Power, 1985, 107(2): 248-257.
[29] Langston L S. Secondary Flows in Axial Turbines--a Review. [J]. Annals of the New York Academy of Sciences, 2001, 934(1): 11-26.
[30] Dallmann U, Herberg T, Gebing H. Flow Field Diagnostics: Topological Flow Changes and Spatio-Temporal Flow Structure[R]. AIAA 95-0791.
[31] 祝成民, 忻鼎定, 庄逢甘. 利用截面数据显示三维涡结构的新方法[J]. 航空学报, 2003, 24(3): 193-198. * 收稿日期:2017-02-16;修订日期:2017-04-12。基金项目:国家自然科学基金资助项目(51576153;51236006);辽宁重大装备协同创新中心资助。作者简介:于洪石,男,硕士生,研究领域为叶轮机械气动热力学。E-mail: yuhongshi@stu.xjtu.edu.cn通讯作者:席光,男,博士,教授,研究领域为叶轮机械气动热力学。E-mail: xiguang@mail.xjtu.edu.cn(编辑:张荣莉)
|