[1] Valkov T V, Tan C S. Effect of Upstream Rotor Vortical Disturbances on the Time-Average Performance of Axial Compressorm Stators, Part 2: Rotor Tip Vortex/Streamwise Vortex-Stator Blade Interactions[J]. Journal of Turbomachinery, 1998, 121(3): 387-397.
[2] Sirakov B T, Tan C S. Effect of Unsteady Stator Wake-Rotor Double-Leakage Tip Clearance Flow Interaction on Time-Average Compressor Performance[J]. Journal of Turbomachinery, 2003, 125(3): 465-474.
[3] Smith L H. Casing Boundary Layers in Multistage Axial Flow Compressors[C]. Switzerland: Proceeding of the Symposium on Flow Research on Blading, 1970: 275–304.
[4] Mikolajczak A A. The Practical Importance of Unsteady Flow[R]. AGARD CP-177, 1976.
[5] Smith L H. Wake Dispersion in Turbomachines[J]. Journal of Basic Engineering, 1996, 88(3): 688-690.
[6] Smith L H. Wake Ingestion Propulsion Benefit[J]. Journal of Propulsion & Power, 1993, 9(1): 74-82.
[7] Tan C S. Internal Flow-Concepts and Applications[D]. Cambridge: Cambridge University Press, 2007.
[8] Valkov T, and Tan C. Effects of Upstream Rotor Vortical Disturbances on Time-Average Performance of Axial Compressor Stator, Part 1: Framework of Technical Approach and Rotor Wakes-Stator Blade Interaction Interaction[J]. Journal of Turbomachinery, 1999, 121(3): 377-386.
[9] Adamczyk J J. Wake Mixing in Axial Flow Compressors [R]. ASME GT 1996-29.
[10] Steven E Gorrell, Theodore H Okiishi, William W Copenhaver. Stator-Rotor Interactions in a Transonic Compressor, Part 1: Effect of Blade-Row Spacing on Performance[R]. Journal of Turbomachinery, 2003, 125(2): 328-335.
[11] Gorrell S E, Okiishi T H, Copenhaver W W. Stator-Rotor Interactions in a Transonic Compressor, Part 2: Description of a Loss-Producing Mechanism[J]. Journal of Turbomachinery, 2003, 125(2): 336-345.
[12] Gorrell S E, Car D, Puterbaugh S L, et al. An Investigation of Wake-Shock Interactions in a Transonic Compressor with Digital Particle Image Velocimetry and Time-Accurate Computational Fluid Dynamics[J]. Journal of Turbomachinery, 2005, 128(4): 616-626.
[13] Clark K P, Gorrell S E . Analysis and Prediction of Shock-Induced Vortex Circulation in Transonic Compressors[J]. Journal of Turbomachinery, 2015, 137(12).
[14] Estevadeordal J, Gogineni S, Goss L, et al. Study of Wake-Blade Interactions in a Transonic Compressor Using Flow Visualization and DPIV[J]. Journal of Fluids Engineering, 2002, 124(1): 166-175.
[15] Zachial A, Nurnberger D. A Numerical Study on the Influence of Vane-Blade Spacing on a Compressor Stage at Sub-and Trasonic Operating Conditions[R]. ASME GT 2003-38020.
[16] Botros B. Impact of Unsteady Flow Processes on the Performance of a High Speed Axial Flow Compressor[D]. Massachusetts: Massachusetts Institute of Technology, 2008.
[17] 张恒铭, 黄秀全. 高负荷对转压气机中尾迹传播机制研究[J]. 推进技术, 2015, 36(10): 1479-1486. (ZHANG Heng-ming, HUANG Xiu-quan. Investigation of Wake Propagation in a Highly Loaded Counter-Rotating Compressor [J]. Journal of Propulsion Technology, 2015 , 36(10): 1479-1486.)
[18] 张恒铭, 黄秀全, 张翔, 等. 两级对转风扇非定常特性分析[J]. 推进技术, 2016, 37(2): 209-217. (ZHANG Heng-ming, HUANG Xiu-quan, ZHANG Xiang, et al. Unsteady Characteristic Analysis of a Two-Stage Counter-Rotating Fan[J]. Journal of Propulsion Technology, 2016 , 37(2): 209-217.)
[19] He L. Method of Simulating Unsteady Turbomachinery Flows with Multiple Perturbations[J]. AIAA Journal, 1992, 30(11): 2730-2735.
[20] Knapke R D, Turner M G. Unsteady Simulations of a Counter-Rotating Aspirated Compressor[R]. ASME GT 2013-95209.
[21] 刘波, 王雷, 黄建. 非线性谐波法在双级对转压气机中的进一步校验[J]. 航空动力学报, 2013, 28(6): 1333-1341.
[22] Moeckel W E. Approximate Method for Predicting Form and Location of Detached Shock Waves Ahead of Plane or Axially Symmetric Bodies[R]. NACA-TN-1921.(编辑:梅瑛) 收稿日期:2017-10-23;修订日期:2017-11-27。基金项目:国家自然科学基金重大项目(51790513);国家重点研发计划(2016YFB0901402)。作者简介:徐强仁,男,博士生,研究领域为叶轮机械气动热力学。E-mail: xuqiangren@iet.cn通讯作者:项效镕,男,博士,高级工程师,研究领域为叶轮机械气动热力学。E-mail: xiangxiaorong@iet.cn
|