[1] Matsuo K, Miyazato Y, Kim H D. Shock Train and Pseudo-Shock Phenomena in Internal Gas Flows[J]. Progress in Aerospace Sciences, 1999, 35(1): 33-100.
[2] Heiser W H, Pratt D T. Hypersonic Air Breathing Propulsion[M]. Washington: AIAA Education Series, 1994.
[3] Huang T, Yue L, Ma S, et al. Downstream Pressure Variation Induced Hysteresis in the Scramjet Isolator[C]. Xiamen: 21st AIAA International Space Planes and Hypersonics Technologies Conference, 2017.
[4] Lin K C, Jackson K, Behdadnia R, et al. Acoustic Characterization of an Ethylene-Fueled Scramjet Combustor with a Cavity Flameholder[J]. Journal of Propulsion and Power, 2010, 26(6): 1161-1170.
[5] Gnani F, Zare-Behtash H, Kontis K. Pseudo-Shock Waves and Their Interactions in High-Speed Intakes[J].Progress in Aerospace Sciences, 2016, 82(4): 36-56.
[6] 易仕和, 陈植. 隔离段激波串流场特征的试验研究进展[J]. 物理学报, 2015, 64(19).
[7] Morgan B, Duraisamy K, Lele S K. Large-Eddy Simulations of a Normal Shock Train in a Constant-Area Isolator[J]. AIAA Journal, 2014, 52(3): 539-558.
[8] Wagner J L, Yuceil K B, Clemens N T. PIV Measurements of Unstart of an Inlet-Isolator Model in a Mach 5 Flow[C]. San Antonio: 39th Fluid Dynamics Conference and Exhibit, 2009.
[9] Gao T, Liang J, Sun M, et al. Analysis of Separation Modes Variation in a Scramjet Combustor with Single-Side Expansion[J]. AIAA Journal, 2017, 55(4): 1307-1317.
[10] 田旭昂, 王成鹏, 程克明. Ma5斜激波串动态特性实验研究[J]. 推进技术, 2014, 35(8): 1030-1039. (TIAN Xu-ang, WANG Cheng-peng, CHENG Ke-ming. Experimental Investigation of Dynamic Characteristics of Oblique Shock Train in Mach 5 Flow[J]. Journal of Propulsion Technology, 2014, 35(8): 1030-1039.)
[11] Wang C, Xue L, Tian X. Experimental Characteristics of Oblique Shock Train Upstream Propagation[J]. Chinese Journal of Aeronautics, 2017, 30(2): 663-676.
[12] Tan H J, Li L G, Wen Y F, et al. Experimental Investigation of the Unstart Process of a Generic Hypersonic Inlet[J]. AIAA Journal, 2011, 49(2): 279-288.
[13] Tan H J, Sun S, Huang H X. Behavior of Shock Trains in a Hypersonic Inlet/Isolator Model with Complex Background Waves[J]. Experiments in Fluids, 2012, 53(6): 1647-1661.
[14] Xu K, Chang J T, Zhou W, et al. Mechanism and Prediction for Occurrence of Shock-Train Sharp Forward Movement[J]. AIAA Journal, 2016, 54(4): 1403-1412.
[15] 曹学斌, 张堃元. 非对称来流下带斜楔的短隔离段数值研究[J]. 推进技术, 2009, 30(6): 677-681. (CAO Xue-bin, ZHANG Kun-yuan. Numerical Investigation for the Short Isolator with a Ramp under Asymmetric Incoming Flow[J]. Journal of Propulsion Technology, 2009, 30(6): 677-681.)
[16] Bruce P J K, Babinsky H. Unsteady Shock Wave Dynamics[J]. Journal of Fluid Mechanics, 2008, 603(603): 463-473.
[17] Bruce P J K, Babinsky H, Tartinville B, et al. Experimental and Numerical Study of Oscillating Transonic Shock Waves in Ducts[J]. AIAA Journal, 2011, 49(8): 1710-1720.
[18] Galli A, Corbel B, Bur R. Control of Forced Shock-Wave Oscillations and Separated Boundary Layer Interaction[J]. Aerospace Science and Technology, 2005, 9(8): 653-660.
[19] Bur R, Benay R, Galli A, et al. Experimental and Numerical Study of Forced Shock-Wave Oscillations in a Transonic Channel[J]. Aerospace Science and Technology, 2006, 10(4): 265-278.
[20] Fan X, Bing X, Wang Y, et al. Experimental Study on the Self-Excited Oscillation and the Forced Oscillation of Shock Train in a Rectangular Isolator[C]. Xiamen: 21st AIAA International Space Planes and Hypersonics Technologies Conference, 2017.
[21] Cheng C, Wang C, Cheng K, et al. Experimental Study of Unsteady Oblique Shock Train and Boundary Layer Interactions[C]. Xiamen: 21st AIAA International Space Planes and Hypersonics Technologies Conference, 2017.
[22] Culick F E C, Rogers T. The Response of Normal Shocks in Diffusers[J]. AIAA Journal, 1983, 21(10): 1382-1390.(编辑:梅瑛) 收稿日期:2017-10-25;修订日期:2017-12-25。基金项目:国家自然科学基金(51776096;51476076);江苏省普通高校学术学位研究生创新计划项目。作者简介:程川,男,博士生,研究领域为高超声速空气动力学。E-mail: cheng010710312@sina.com通讯作者:王成鹏,男,博士,副教授,研究领域为高超声速空气动力学。E-mail: wangcp@nuaa.edu.cn
|