[1] Lee K O, Megaridis M C, Zelepouga S, et al. Soot Formation Effects of Oxygen Concentration in the Oxidizer Stream of Laminar Coannular Nonpremixed Methane/Air Flames[J]. Combustion and Flame, 2000, 121(1-2): 323-333.
[2] 刘玉英, 李娜娜, 黄望全. 燃烧过程中碳烟辐射特性预测方法评述[J]. 推进技术, 2016, 37(3): 479-487.(LIU Yu-ying, LI Na-na, HUANG Wang-quan. Review on Soot Radiation Property Estimation of Combustion Process[J]. Journal of Propulsion Technology, 2016, 37(3): 479-487.)
[3] Ramanathan V, Carmichael G. Global and Regional Climate Changes Due to Black Carbon[J]. Nature Geoscience, 2008, 36(1): 335-358.
[4] Jacobson M Z. Strong Radiative Heating Due to the Mixing State of Black Carbon in Atmospheric Aerosols[J]. Nature, 2001, 409(6): 695-697.
[5] 张小塔, 宋武林, 郭连贵, 等. 激光-感应复合加热法制备碳包覆纳米铝粉[J]. 推进技术, 2007, 28(3): 333-336. (ZHANG Xiao-ta, SONG Wu-lin, GUO Lian-gui, et al. Preparation of Carbon-Coated Al Nanopowders by Laser-Induction Complex Heating Method[J]. Journal of Propulsion Technology, 2007, 28(3): 333-336.)
[6] Glassman I. Soot Formation in Combustion Processes[J]. Symposium on Combustion, 1989, 22(1): 295-311.
[7] Santoro R J, Yeh T T, Horvath J J, et al. The Transport and Growth of Soot Particles in Laminar Diffusion Flames[J]. Combustion Science and Technology, 1987, 53(2-3): 89-115.
[8] Wang H, Frenklach M. A Detailed Kinetic Modeling Study of Aromatics Formation in Laminar Premixed Acetylene and Ethylene Flames[J]. Combustion and Flame, 1997, 110(1-2): 173-221.
[9] Richter H, Howard J B. Formation of Polycyclic Aromatic Hydrocarbons and Their Growth to Soot-a Review of Chemical Reaction Pathways[J]. Journal of Applied Polymer Science, 2000, 26(4): 565-608.
[10] Howard J B, Chowdhury K D, Vander Sande J B. Carbon Shells in Flames[J]. Nature, 1994, 370(6491): 603-603.
[11] Wal R L V. Flame Synthesis of Substrate-Supported Metal-Catalyzed Carbon Nanotubes[J]. Chemical Physics Letters, 2000, 324(1): 217-223.
[12] Merchan-Merchan W, Saveliev A V, Kennedy L, et al. Combustion Synthesis of Carbon Nanotubes and Related Nanostructures[J]. Progress in Energy and Combustion Science, 2010, 36(6): 696-727.
[13] Santoro R J, Semerjian H G, Dobbins R A. Soot Particle Measurements in Diffusion Flames[J]. Combustion and Flame, 1983, 51(2): 203-218.
[14] Puri R, Richardson T F, Santoro R J, et al. Aerosol Dynamic Processes of Soot Aggregates in a Laminar Ethene Diffusion Flame[J]. Combustion and Flame, 1993, 92(3): 320-333.
[15] Smooke M D, Long M B, Connelly B C, et al. Soot Formation in Laminar Diffusion Flames[J]. Combustion and Flame, 2005, 143(4): 613-628.
[16] Bento D S, Thomson K A, Gülder ?mer L. Soot Formation and Temperature Field Structure in Laminar Propane-Air Diffusion Flames at Elevated Pressures[J]. Combustion and Flame, 2006, 145(4): 765-778.
[17] 王宝璐, 额日其太. 甲烷反扩散火焰光谱特性实验研究[J]. 推进技术, 2016, 37(1): 105-111. (WANG Bao-lu, Eriqitai. Experiment Study of Inverse Methane/Air Diffusion Flame Emission Spectrum Properties[J]. Journal of Propulsion Technology, 2016, 37(1): 105-111.)
[18] Shim S H, Shin H D. Transition Morphology of Deposits on SiC Fibers in Propane/Air Laminar Diffusion Flames[J]. Combustion and Flame, 2002, 131(1): 210-218.
[19] Shim S H, Shin H D. Application of Thin SiC Filaments to the Study of Coflowing, Propane Air Diffusion Flames: a Review of Soot Inception[J]. Combustion Science and Technology, 2003, 175(1): 207-223.
[20] Shim S H, Ahn K Y, Sang H J, et al. Study of Deposit Morphology in a Propane Diffusion-Flame under Fuel-Rich Conditions[J]. Applied Energy, 2004, 79(2): 179-189.
[21] Wang Y, Yao Q. Deposit Morphology on SiC Fibers in Methane-Acetylene/Air Laminar Diffusion Flames[J]. Korean Journal of Chemical Engineering, 2007, 24(2): 305-310.
[22] Dobbins R A, Megaridis C M. Morphology of Flame-Generated Soot as Determined by Thermophoretic Sampling[J]. Langmuir, 1987, 3(2): 254-259.
[23] K?ylü ü ?, McEnally C S, Rosner D E, et al. Simultaneous Measurements of Soot Volume Fraction and Particle Size/Microstructure in Flames Using a Thermophoretic Sampling Technique[J]. Combustion and Flame, 1997, 110(4): 494-507.
[24] Gerardo D J, Guerrero P, Abhijeet R, et al. Physicochemical Properties of Soot Generated from Toluene Diffusion Flames Effects of Fuel Flow Rate[J]. Combustion and Flame, 2017, 178: 286-296.
[25] Vargas A M, Gülder ?mer L. Pressure Dependence of Primary Soot Particle Size Determined Using Thermophoretic Sampling in Laminar Methane-Air Diffusion Flames[J]. Proceedings of the Combustion Institute, 2017, 36(1): 975-984.
[26] Kempema N J, Long M B. Combined Optical and TEM Investigations for a Detailed Characterization of Soot Aggregate Properties in a Laminar Coflow Diffusion Flame[J]. Combustion and Flame, 2016, 164(3): 373-385.
[27] Xu Z W, Zhao H B, Chen X B, et al. Multi-Parameter Measurements of Laminar Sooting Flames Using Thermophoretic Sampling Technique[J]. Combustion and Flame, 2017, 180(1): 158-166.
[28] Saito K, Gordon A S, Willims F A, et al. A Study of the Early History of Soot Formation in Various Hydrocarbon Diffusion Flame[J]. Combustion Science and Technology, 1991, 80(1): 103-119.
[29] Oh K C, Shin H D. The Effect of Oxygen and Carbon Dioxide Concentration on Soot Formation in Non-Premixed Flames[J]. Fuel, 2006, 85(5): 615-624.
[30] Oh K C, Lee U D, Shin H D, et al. The Evolution of Incipient Soot Particles in an Inverse Diffusion Flame of Ethane[J]. Combustion and Flame, 2005, 140(3): 249-254.
[31] Du D X, Axelbaum R L, Law C K. The Influence of Carbon Dioxide and Oxygen as Additives on Soot Formation in Diffusion Flames[J]. Symposium on Combustion, 1991, 23(1): 1501-1507.
[32] Glassman, Yaccarino P. The Effect of Oxygen Concentration on Sooting Diffusion Flames[J]. Combustion Science and Technology, 1980, 24(3-4): 107-114.
[33] McEnally C S, K?ylü ü ?, Pfefferle L D. Soot Volume Fraction and Temperature Measurements in Laminar Nonpremixed Flames Using Thermocouples[J]. Combustion and Flame, 1997, 109(4): 701-720.
[34] Roper F G. The Prediction of Laminar Jet Diffusion Flame Sizes: Part I. Theoretical Model[J]. Combustion and Flame, 1977, 29(3): 219-226.
[35] Abdelgadir A, Rakha I A, Steinmetz S A, et al. Effects of Hydrodynamics and Mixing on Soot Formation and Growth in Laminar Coflow Diffusion Flames at Elevated Pressures[J]. Combustion and Flame, 2017, 181: 39-53.
[36] Charest M R J, Groth C P T, Gülder ?mer L. A Numerical Study on the Effects of Pressure and Gravity in Laminar Ethylene Diffusion Flames[J].Combustion and Flame, 2011, 158(10): 1933-1945.
[37] Xu F, Faeth G M. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure[J]. Combustion and Flame, 2001, 125(1-2): 804-819.
[38] Raj A, Sander M, Janardhanan V, et al. A Study on the Coagulation of Polycyclic Aromatic Hydrocarbon Clusters to Determine Their Collision Efficiency[J]. Combustion and Flame, 2010, 157(3): 523-534.
[39] Kholghy M, Saffaripour M, Yip C, et al. The Evolution of Soot Morphology in a Laminar Coflow Diffusion Flame of a Surrogate for Jet A-1[J]. Combustion and Flame, 2013, 160(10): 2119-2130
[40] Frenklach M, Wang H. Detailed Modeling of Soot Particle Nucleation and Growth[J]. Symposium on Combustion, 1991, 23(1): 1559-1566.
[41] Boehman A L, Song J, Alam M. Impact of Biodiesel Blending on Diesel Soot and the Regeneration of Particulate Filters[J]. Energy & Fuels, 2005, 19(5): 1857-1864.
[42] Hadef R, Geigle K P, Zerbs J, et al. The Concept of 2D Gated Imaging for Particle Sizing in a Laminar Diffusion Flame[J]. Applied Physics B, 2013, 112(3): 395-408.(编辑:史亚红) 收稿日期:2017-09-30;修订日期:2017-12-12。基金项目:国家自然科学基金(51676002);国家重点研发计划项目(2017YFB0601805);国家重大科研仪器研制项目 (51827808)。作者简介:韩伟伟,男,硕士生,研究领域为碳烟生成机理及检测。E-mail: 1300591445@qq.com通讯作者:楚化强,男,博士,教授,研究领域为燃烧检测与分析。E-mail: hqchust@163.com
|