[1] 姜宗林. 关于吸气式高超声速推进技术研究的思考[J]. 力学进展, 2009, 39(4): 398-405.
[2] Dunlap R. A Preliminary Study of the Application of Steady-State Detonative Combustion to a Reaction Engine[J]. Jet Propulsion, 1957, 28(7): 158-160.
[3] Hertzberg A, Bruckner A P, Bogdanoff D W. Ram Accelerator-A New Chemical Method for Accelerating Projectiles to Ultrahigh Velocities[J]. AIAA Journal, 2015, 26(2): 195-203.
[4] 马丹花, 翁春生. 爆震管内扰流片对爆震波影响的数值分析[J]. 推进技术, 2011, 32(3). (MA Dan-hua, WENG Chun-sheng. Numerical Investigation of Two-Phase Detonation with the Osbstacles[J]. Journal of Propulsion Technology, 2011, 32(3).)
[5] 陈巍, 范玮, 李建玲, 等. 脉冲爆震火箭发动机高频实验研 究[J]. 推进技术, 2011, 32(3): 443-446. (CHEN Wei, FAN Wei, LI Jian-ling, et al. Experiments on High Frequency Pulse Detonation Rocket Engine[J]. Journal of Propulsion Technology, 2011, 32(3): 443-446.)
[6] 刘世杰, 覃慧, 林志勇, 等. 连续旋转爆震波细致结构及自持机理[J]. 推进技术, 2011, 32(3): 431-436. (LIU Shi-jie, QIN Hui, LIN Zhi-yong, et al. Detailed Structure and Propagating Mechanism Research on Continuous Rotating Detonation Wave[J]. Journal of Propulsion Technology, 2011, 32(3): 431-436.)
[7] 归明月, 范宝春. 尖劈诱导的斜爆轰波的精细结构及其影响因素[J]. 推进技术, 2012, 33(3): 490-494. (GUI Ming-yue, FAN Bao-chun. Fine Structure and Its Influence Factor of Wedge-Induced Oblique Detonation Waves[J]. Journal of Propulsion Technology, 2012, 33(3): 490-494.)
[8] Silva L F F D, Deshaies B. Stabilization of an Oblique Detonation Wave by a Wedge: a Parametric Numerical Study[J]. Combustion & Flame, 2000, 121(1–2): 152-166.
[9] Choi J Y, Kim D W, Jeung I S, et al. Cell-Like Structure of Unstable Oblique Detonation Wave from High-Resolution Numerical Simulation[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2473-2480.
[10] 董刚, 范宝春. 来流温度影响驻定爆轰波结构和性能的数值研究[J]. 高压物理学报, 2011, 25(3): 193-199.
[11] Liu Y, Wu D, Yao S, et al. Analytical and Numerical Investigations of Wedge-Induced Oblique Detonation Waves at Low Inflow Mach Number[J]. Combustion Science & Technology, 2015, 187(6): 843-856.
[12] Powers J M, Stewart D S. Approximate Solutions for Oblique Detonations in the Hypersonic Limit[J]. AIAA Journal, 1992, 30(3): 726-736.
[13] Ashford S A, Emanuel G. Wave Angle for Oblique Detonation Waves[J]. Shock Waves, 1994, 3(4): 327-329.
[14] Morris C I, Kamel M R, Hanson R K. Shock-Induced Combustion in High-Speed Wedge Flows[J]. Symposium on Combustion, 1998, 27(2): 2157-2164.
[15] Fusina G, Sislian J P, Parent B. Formation and Stability of Near Chapman-Jouguet Standing Oblique Detonation Waves[J]. AIAA Journal, 2012, 43(7):1591-1604.
[16] Viguier C, Gourara A, Desbordes D. Three-Dimensional Structure of Stabilization of Oblique Detonation Wave in Hypersonic Flow[J]. Symposium on Combustion, 1998, 27(2): 2207-2214.
[17] Desbordes D, Hamada L, Guerraud C. Supersonic H2-Air Combustions behind Oblique Shock Waves[J]. Shock Waves, 1995, 4(6): 339-345.
[18] Liu Y, Liu Y S, Wu D, et al. Structure of an Oblique Detonation Wave Induced by a Wedge[J]. Shock Waves, 2016, 26(2): 161-168.
[19] 熊姹, 严传俊, 邱华. 不同化学反应机理对爆震波模拟的影响[J]. 燃烧科学与技术, 2008, 14(4):355-360.
[20] Wang T, Zhang Y, Teng H, et al. Numerical Study of Oblique Detonation Wave Initiation in a Stoichiometric Hydrogen-Air Mixture[J]. Physics of Fluids, 2015, 27(9).
[21] Teng H, Ng H D, Jiang Z. Initiation Characteristics of Wedge-Induced Oblique Detonation Waves in a Stoichiometric Hydrogen-Air Mixture[J]. Proceedings of the Combustion Institute, 2016, 36(2): 2735-2742.
[22] Hui T H, Lin J Z. On the Transition Pattern of the Oblique Detonation Structure[J]. Journal of Fluid Mechanics, 2012, 713(6): 659-669.
[23] Zhang Y, Gong J, Wang T. Numerical Study on Initiation of Oblique Detonations in Hydrogen–Air Mixtures with Various Equivalence Ratios[J]. Aerospace Science & Technology, 2016, 49: 130-134.
[24] Bhattrai S, Hao T. Numerical Study of Shcramjet Combustor Characteristic Control Techniques[J]. Frontiers in Aerospace Engineering, 2013, 2(3): 189-198.
[25] Kee R J, Rupley F M, Meeks E, et al. CHEMKIN-III: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical and Plasma Kinetics, Sandia National Laboratories Report[J]. Sandia Report, 1991, 96(3): 142-6.
[26] Lu T, Law C, Ju Y. Some Aspects of Chemical Kinetics in Chapman-Jouguet Detonation: Induction Length Analysis[J]. Biomedical Chromatography, 2003, 17(2-3):126–132.
[27] Ng H D, Ju Y, Lee J H S. Assessment of Detonation Hazards in High-Pressure Hydrogen Storage from Chemical Sensitivity Analysis[J]. International Journal of Hydrogen Energy, 2007, 32(1): 93-99.
[28] Teng H, Zhang Y, Jiang Z. Numerical Investigation on the Induction Zone Structure of the Oblique Detonation Waves[J]. Computers & Fluids, 2014, 95(3): 127-131. 收稿日期:2017-10-20;修订日期:2017-12-27。基金项目:国家自然科学基金(51576098)。作者简介:陈楠,男,硕士生,研究领域为爆轰、计算流体力学。E-mail: cn911025@163.com通讯作者:唐豪,男,博士,教授,研究领域为热能工程、计算流体力学。E-mail: hao.tang@nuaa.edu.cn(编辑:梅瑛)
|