[1] 李骏, 宋友辉, 刘汉斌, 等. 涡轮叶片-榫头-轮盘的蠕变与低循环疲劳寿命预测[J]. 推进技术, 2015, 36(11): 1699-1704. (LI Jun, SONG You-hui, LIU Han-bin, et al. Creep and Low Cycle Fatigue Life Prediction for Turbine Blade-Tenon-Disk Structure[J]. Journal of Propulsion Technology, 2015, 36(11): 1699-1704.)
[2] 牟园伟, 陆山. 轮盘低周疲劳概率寿命预估模型[J]. 推进技术, 2012, 33(2): 288-292. (MOU Yuan-wei, LU Shan. Low Cycle Fatigue Probabilistic Life Prediction Models for Fan Disk[J]. Journal of Propulsion Technology, 2012, 33(2): 288-292.)
[3] 唐俊星. 含夹杂粉末盘概率寿命三维仿真方法与应用[D]. 西安:西北工业大学, 2008.
[4] Peterson R E. Stress Concentration Factors[M]. New York: John Wiley & Sons, 1974.
[5] Neuber H. Theory of Notch Stresses[M]. Virginia: USAEC Office of Technical Information, 1961.
[6] Kuhn P, Hardran H F. An Engineering Method for Estimating Notch-Size Effect in Fatigue Tests of Steel[R]. NACA-TN-2805, 1952.
[7] Buch A. Evaluation of Size Effect in Fatigue Tests on Unnotched Specimens and Components[J]. Archiv Furdas Eisenhuttenwesen, 1972, 43(4): 885-900.
[8] Sheppard S D. Field Effects in Fatigue Crack Initiation: Long Life Fatigue Strength[J]. Journal of Mechanical Design, Transaction of the ASME, 1991, 113(2): 188-194.
[9] Bellett D, Taylor D, Marco S, et al. The Fatigue Behavior of Three-Dimensional Stress Concentrations[J]. International Journal of Fatigue, 2005, 27(3): 207-221.
[10] 辛朋朋, 胡绪腾, 宋迎东. 基于临界距离理论的TC4合金缺口试样低循环疲劳寿命预测[J]. 航空动力学报, 2012, 27(5): 1105-1112.
[11] Shirani M, Harkegard G. Fatigue Life Distribution and Size Effect in Ductile Cast Iron for Wind Turbine Components[J]. Engineering Failure Analysis, 2011, 18(1): 12-24.
[12] Daniel S, Marten O. An Investigation of the Prediction Accuracy for Volume Based HCF Models Using Scaled Geometries and Scaled Loading[J]. International Journal of Fatigue, 2016, 82(2): 317-324.
[13] Kristoffer K, Marten O. A Study of the Volume Effect and Scatter at the Fatigue Limit–Experimental and Computations for a New Specimen with Separated Notches[J]. International Journal of Fatigue, 2011, 33(3): 363-371.
[14] Kristoffer K, Marten O. A Investigation of a Fatigue Model with Two Competing Failure Mechanisms[J]. International Journal of Fatigue, 2014, 64(7): 131-139.
[15] Yao W X. Stress Field Intensity Approach for Prediction Fatigue Life[J]. International Journal of Fatigue, 1993, 15(3): 234-245.
[16] 陆山, 张鸿, 唐俊星, 等. 考虑尺寸效应的轮盘应力疲劳概率寿命分析方法[J]. 航空动力学报, 2011, 26(9): 2039-2043.
[17] 刘香, 王延荣, 田爱梅, 等. 考虑尺寸效应的缺口疲劳寿命预测方法[J]. 航空动力学报, 2017, 32(2): 429-437.
[18] Dowling N E, Calhoun C A, Arcari A. Mean Stress Effects in Stress-Life Fatigue and the Walker Equation[J]. Fatigue & Fracture of Engineering Materials & Structures, 2008, 32(3): 163-179.
[19] 苏运来, 陆山. 适用于任意应变比的应变寿命新模型[J]. 推进技术, 2018, 39(1): 169-175. (SU Yun-lai, LU Shan. A New Strain-Life Model Accounting for Effects of Various Strain Ratios[J]. Journal of Propulsion Technology, 2018, 39(1): 169-175.)
[20] 苏运来, 陆山, 杨茂, 等. 任意应力比下涡轮盘的塑性应变能寿命模型[J]. 航空动力学报, 2017, 32(4): 828-834.
[21] 谢里阳, 任俊刚, 吴宁祥, 等. 复杂结构部件概率疲劳寿命预测方法与模型[J]. 航空学报, 2015, 36(8): 2688-2695.
[22] 高振同, 熊俊江. 疲劳可靠性[M]. 北京:北京航空航天大学, 2000: 74-75.
[23] 奚蔚, 姚卫星. 缺口件疲劳寿命分布预测的有效应力法[J]. 固体力学学报, 2013, 34(2): 205-212.
[24] Weibull W. A Statistical Distribution Function of Wide Applicability[J]. ASME Journal of Applied Mechanics, 1951, 18(3): 293-297.
[25] 陆山, 王春光, 陈军. 任意最大应力梯度路径轮盘模拟试件设计方法[J]. 航空动力学报, 2010, 25(9): 2000-2005. 收稿日期:2017-10-17;修订日期:2017-12-22。作者简介:苏运来,男,博士生,研究领域为航空发动机疲劳、寿命及可靠性分析。E-mail: suyunlai@163.com通讯作者:陆山,男,博士,教授,研究领域为航空发动机结构强度、寿命可靠性分析及试验评估技术。 (编辑:史亚红)
|