推进技术 ›› 2019, Vol. 40 ›› Issue (11): 2587-2597.DOI: 10.13675/j.cnki. tjjs. 180695

• 测试 试验 控制 • 上一篇    下一篇

基于LMI极点配置的高空台飞行环境模拟系统PI增益调度控制研究

朱美印1,2,王曦1,2,张松3,但志宏3,裴希同3,缪柯强1,2,姜震1,2   

  1. 1.北京航空航天大学 能源与动力工程学院,北京 100191;2.先进航空发动机协同创新中心,北京 100191;3.中国航发四川燃气涡轮研究院 高空模拟技术重点实验室,四川 绵阳;621703
  • 发布日期:2021-08-15

PI Gain Scheduling Control for Flight EnvironmentSimulation System of Altitude Ground TestFacilities Based on LMI Pole Assignment

  1. 1.School of Energy and Power Engineering,Beihang University, Beijing 100191,China;2.Collaborative Innovation Center for Advanced Aero-Engine,Beijing 100191,China;3.Science and Technology on Altitude Simulation Laboratory,AECC Sichuan Gas Turbine Establishment,Mianyang 621703,China
  • Published:2021-08-15

摘要: 针对高空台飞行环境模拟系统的温度和压力在整个工作包线内的鲁棒性能控制问题,提出了一种基于LMI极点配置的PI增益调度控制设计方法。在考虑变比热容腔微分方程、管道热传导、调节阀流量特性、液压伺服动态、传感器增益对飞行环境模拟系统造成的建模不确定性的基础上,建立了完整、准确的飞行环境模拟系统非线性模型;对非线性模型进行了线性化,并根据线性模型推导了基于LMI极点配置的PI控制器设计算法;在飞行环境模拟系统的工作包线内选取了36个稳态点设计了基于LMI极点配置的PI增益调度控制器;设计了两种飞行环境模拟试验来验证设计的PI增益调度控制器的鲁棒性能。仿真结果表明,飞行环境模拟系统温度的稳态误差和动态误差均小于0.1%,压力的稳态误差小于0.5%,动态误差小于0.7%。

关键词: 高空模拟试验台;飞行环境模拟系统;LMI;极点配置;PI增益调度控制

Abstract: Aiming at the problem of robust servo performance of temperature and pressure of Flight Environment Simulation System (FESS) of Altitude ground test facilities (AGTF) over the whole operational envelope, a PI gain scheduling control design method based on Linear Matrix Inequality (LMI) pole assignment is proposed. On the basis of considering the FESS modeling uncertainties caused by variable specific heat pipe volume differential equation, pipe heat conduction, control valve flow characteristics, hydraulic servo system dynamics and sensor gain, a complete and accurate nonlinear model of FESS was establised. Then, the nonlinear model is linearized around an equilibrium point and the LMI pole assignment PI gain scheduling control design method is deduced based on the linear system. Furthermore, 36 steady state points were chosen over the whole working range of FESS to design the LMI pole assignment PI gain schedule controller. Finally, two types of flight environment simulate tests are devised to verify the robust servo performance of the designed PI gain schedule controller. The simulation results show, for temperature control, the steady-state and transient errors are both less than 0.1%, for pressure control, the steady-state error is less than 0.5% and transient error is less than 0.7%.

Key words: Altitude ground test facilities;Flight environment simulation system;Linear matrix inequality;Pole assignment;PI gain scheduling