Investigation on Change Laws of Current Peak Position in Electrodynamic Space Tether
1.College of Resource and Environment,University of Electronic Science and Technology of China, Chengdu 611731, China;2.Shanghai Institute of Space Propulsion, Shanghai 201112, China;3.Aerospace System Engineering Shanghai, Shanghai 201108, China
YU Bo1,2,WANG Zhong-yuan3,QIAO Cai-xia2,KANG Xiao-lu2,ZHAO Qing1. Investigation on Change Laws of Current Peak Position in Electrodynamic Space Tether[J]. Journal of Propulsion Technology, 2020, 41(2): 469-480.
[1] Ohkawa Y , Kawamoto S , Okumura T , et al . Perparation for On-Orbit Demonstration of Electrodynamic Tether on HTV[C]. Japan: 34th International Electric Propulsion Conference, 2015.
[2] Ohkawa Y , Kitamura S , Kawamoto S , et al . A Carbon Nanotube Field Emission Cathode for Electrodynamic Tether Systems [C]. Wiesbaden: 32nd International Electric Propulsion Conference, 2011.
[3] Bilen S , McTernan J , Gilchrist B , et al . Harnessing the “Orbital Battery” for Propulsion via Energy-Harvesting Electrodynamic Tethers [C]. Wiesbaden: 32nd International Electric Propulsion Conference, 2011.
[4] Bonometti J , Sorensen K . 2006 State of the Momentum Excharge Electrodynamic Re-Boost (MXER) Tether Development [C]. Sacramento: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2006.
[5] Ahedo E , Sanmartin J . Analysis of Bare-Tether Systems for Deorbiting Low-Earth-Orbit Satellites[J]. Journal of Spacecraft and Rockets, 2002, 39( 2): 198- 205.
[6] Sanmartin J , Estes R , Lorenzini E , et al . Efficiency of Electrodynamic Tether Thrusters[J]. Journal of Spacecraft and Rockets, 2006, 43( 3): 659- 666.
[7] Zhu Z H , Larouche B , James G . Design of a Electrodynamic Tether Nanosatellite Mission[C]. Long Beach: AIAA SPACE 2011 Conference & Exposition, 2011.
[8] Zhong R , Zhu Z H . Dynamics of Nanosatellite Deorbit by Bare Electrodynamic Tether in Low Earth Orbit[J]. Journal of Spacecraft and Rockets, 2013, 50( 3): 691- 700.
[9] Zhong R , Zhu Z H . Optimal Control of Nanosatellite Fast Deorbit Using Electrodynamic Tether[J]. Journal of Guidance, Control and Dynamics, 2014, 37( 4): 1182- 1192.
[10] Sanmartin J , Martinez-Sanchez M , Ahedo E . Bare Wire Anodes for Electrodynamic Tether [J]. Journal of Propulsion and Power, 1993, 9( 3): 353- 360.
[11] Sanmartin J , Estes R . The Orbital-Motion-Limited Regime of Cylindrical Langmuir Probes[J]. Physics of Plasmas, 1999, 6( 1): 395- 405.
[12] Mott-Smith H , Langmuir I . The Theory of Collectors in Gaseous Discharges[J]. Physical Review, 1926, 28: 727- 763.
[13] Fuhrhop K , Gilchrist B . Electrodynamic Tether System Analysis Comparing Various Mission Scenarios [C]. Tucson: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2005.
[14] Janeski J , Hall C , Scales W . Effects of Local Plasma Environment on Dynamics of Electrodynamic Tether Systems [J]. Journal of Spacecraft and Rockets, 2015, 52( 2): 496- 505.
[15] Arriaga G , Bombardelli C , Chen X . Impact of Nonideal Effects on Bare Electrodynamic Tether Performance[J]. Journal of Propulsion and Power, 2015, 31( 3): 951- 955.
[16] Xie K , Martinez R , Williams J . Current-Voltage Characteristics of a Cathodic Plasma Contactor with Discharge Chamber for Application in Electrodynamic Tether Propulsion[J]. Journal of Physics D: Applied Physics, 2014, 47( 15).
[17] Xie K , Xia Q , Williams J , et al . Extracted Current, Bias Voltage, and Ion Production of Cathodic Hollow-Cathode-Driven Plasma Contactor [J]. Journal of Spacecraft and Rocket, 2015, 52( 4): 1181- 1192.
[18] Xie K , Farnell C , Williams J . The Plasma Properties and Electron Emission Characteristics of Near-Zero Differential Resistance of Hollow Cathode-Based Plasma Contactors with a Discharge Chamber[J]. Physics of Plasmas, 2014, 21( 8): 353- 360.
[19] Qin Y , Xie K , Guo N , et al . The Analysis of High Amplitude of Potential Osillations Near the Hollow Cathode of Ion Thruster [J]. Acta Astronautica, 2017, 134( 1): 265- 277.
[20] Qin Y , Xie K , Ouyang J . Self-Pulsing in a Low-Current Hollow Cathode Discharge: From Townsend to Glow Discharge [J]. Physics of Plasmas, 2016, 23( 2).
[21] Santos R , Ahedo E . Accuracy Improvements in a Hall Thruster PIC/Fluid Code[C]. Denver: 45thAIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2009.
[22] Onishi T , Martinez-Sanchez M , Cooke D . Computation of Current to a Moving Bare Tether [C]. Kitakyushu: 26th International Electric Propulsion Conference, 1999.
[23] Onishi T , Martinez-Sanchez M , Cooke D , et al . PIC Computation of Electron Current Collection to a Moving Bare Tether in the Mesothermal Condition [C]. Pasadena: 27th International Electric Propulsion Conference, 2001.
[24] 潘 杰 . 大气压Ar、N 2和 Ar/O 2气体脉冲介质阻挡放电等离子体机理及特性的数值模拟 [D]. 济南: 山东大学, 2016.
[25] Shunsuke S , Toshiyuki K , Junichiro A , et al . Discharge Modes and Characteristics of Hollow Cathode [C]. Florence: 30th International Electric Propulsion Conference, 2007.
[26] Boltachev G , Zubarev N . Space Charge Influence on the Angle of Conical Spikes Developing on a Liquid-Metal Anode [J]. Physical Review E, 2012, 77: 1- 10.
[27] 林祖伦, 王小菊 . 阴极电子学(第一版)[M]. 北京: 国防工业出版社, 2013.