Investigation of Engine Installed Effect on Thrust of Blended Wing Body Transport with Podded Engines
1.School of Aeronautics,Northwestern Polytechnical University, Xi’an 710072, China;2.Shanghai Aircraft Design and Research Institute,Commercial Aircraft Corporation of China Limited, Shanghai 200120, China
GU Wen-ting1,CHEN Ying-chun2,CHEN Zhen-li1,SANG Wei-min1,ZHANG Bin-qian1. Investigation of Engine Installed Effect on Thrust of Blended Wing Body Transport with Podded Engines[J]. Journal of Propulsion Technology, 2020, 41(2): 260-267.
[1] Laban M . Aircraft Drag and Thrust Analysis[R]. Amsterdarm: Netherland Aerospace Centre, NLR-TP-2000-473, 2000.
[2] Zheng W L , Wang Y J , Shan J X . Interference Mechanism of Engine Exhaust on Civil Aircraft Drag Performance[J]. Journal of Aircraft, 2012, 49( 6): 2001- 2006.
[3] Zhang Y F , Chen H X , Fu S , et al . Drag Prediction Method of Powered-On Civil Aircraft Based on Thrust Drag Bookkeeping[J]. Chinese Journal of Aeronautics, 2015, 28( 4): 1023- 1033.
[4] Suder K L . Overview of the NASA Environmentally Responsible Aviation Poject’s Propulsion Technology Portfolio[R]. AIAA 2012- 4038.
[5] Schuh M J , Garcia J A , Carter M B , et al . NASA Environmentally Responsible Aviation Hybrid Wing Body Flow-Through Nacelle Wind Tunnel CFD[R]. AIAA 2016- 0263.
[6] Shea P R , Flamm J D , Long K R , et al . Turbine Powered Simulator Calibration and Testing for Hybrid Wing Body Powered Airframe Integration[R]. AIAA 2016- 0011.
[7] Tong M T , Jones S M , Haller W J , et al . Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft[R]. NASA GT 2009- 59568.
[8] Hooker J R , Wick A . Design of the Hybrid Wing Body for Fuel Efficient Air Mobility Operations[R]. AIAA 2014- 1285.
[9] Flamm J D , James K D , Bonet J T . Overview of ERA Integrated Technology Demonstration (ITD) 51A Ultra-High Bypass (UHB) Integration for Hybrid Wing Body (HWB) [R]. AIAA 2016- 0007.
[10] Deere K A , Luckring J M , Mcmillin S N , et al . CFD Predictions for Transonic Performance of the ERA Hybrid Wing-Body Configuration[R]. AIAA 2016- 0266.
[11] Rudnik R , Rossow C , Geyr H . Numerical Simulation of Engine/Airframe Integration for High-Bypass Engines[J]. Aerospace Science and Technology, 2002, 6( 1): 31- 42.
[12] 白俊强, 张晓亮, 刘 南, 等 . 考虑动力影响的大型运输机增升构型气动特性研究[J]. 空气动力学学报, 2014, 32( 4): 499- 505.
[13] 杨体浩, 白俊强, 王 丹, 等 . 考虑发动机干扰的尾吊布局后体气动优化设计[J]. 航空学报, 2014, 35( 7): 1836- 1844.
[14] Guo S J , Zhou P P , Wang B , et al . Research of the Effects of Power on Aerodynamic Characteristics of a Civil Aircraft[R]. AIAA 2016- 4177.
[15] 贾洪印, 马明生, 吴晓军, 等 . 发动机进排气效应对民机构型气动特性影响[J]. 航空动力学报, 2017, 32( 8): 1900- 1910.
[16] 张 兆, 陶 洋, 黄国川 . 发动机短舱溢流阻力的数值模拟[J]. 航空学报, 2013, 34( 3): 547- 553.
[17] 姬昌睿, 刘凯礼, 张鹏飞, 等 . 外物损伤对民用飞机短舱内/外流气动特性的影响[J]. 航空学报, 2015, 36( 3): 772- 781.
[18] 党亚斌, 刘凯礼, 谭兆光, 等 . 民用飞机尾吊发动机安装效应对推力影响研究[J]. 推进技术, 2018, 39( 8): 1712- 1719.
[19] Jesse Q , Frank H G . Conceptual Design and Structural Optimization of NASA Environmentally Responsible Aviation (ERA) Hybrid Wing Body Aircraft[R]. AIAA 2016- 0229.
[20] Rodriquez D L . Multidisciplinary Optimization Method for Designing Boundary-Layer-Ingesting Inlets[J]. Journal of Aircraft, 2009, 46( 3): 883- 894.
[21] 刘李涛, 杨 永, 李喜乐 . 外吹式动力吹气襟翼N-S方程数值分析[J]. 航空计算技术, 2008, 38( 3): 61- 64.
[22] 谭兆光, 陈迎春, 李 杰, 等 . 机体/动力装置一体化分析中的动力影响效应数值模拟[J]. 航空动力学报, 2009, 24( 8): 1766- 1772.
[23] Naoki H , Kisuke A , Katsuya I . Transonic 3-D Euler Analysis of Flows Around Fan-Jet Engine and T.P.S. (Turbine Powered Simulator)[R]. NAL-TR-1045, 1989.
[24] Yu G , Li D , Shu Y , et al . The Engine Position Effect on SWB Airplane Aerodynamic Performance [C]. Chengdu: 2018 Asia-Pacific International Symposium on Aerospace Technology, 2018.