SONG Fu1,ZHOU Li1,WANG Zhan-xue1,ZHANG Ming-yang1,ZHANG Xiao-bo1. An Investigation of Coupling Method Between Two-Dimensional Core Driven Fan Stage Model and Zero-Dimensional VariableCycle Engine Model[J]. Journal of Propulsion Technology, 2020, 41(3): 500-508.
[1] Allan R D.General Electric Company Variable Cycle Engine Technology Demonstrator Program[R].AIAA79-1311.
[2] Johnson J E.Variable Cycle Engines-the Next Step in Propulsion Evolution[R].AIAA76-758.
[3] Piccirillo A C.Origins of the F-22 Raptor[R].AIAA98-5566.
[4] Thomas R D.Engine Wars: Competition for US Fighter Engine Production[R].AIAA98-3115.
[5] 倪金刚.GE航空发动机百年史话[M].北京:航空工业出版社,2015.
[6] Silva W A,Sanetrik M D,Chwalowski P,et al.Computational Aeroelastic Analysis of a Low-Boom Supersonic Conguration[R].NF1676L-20147.
[7] Connolly J W,Kopasakis G,Chwalowski P,et al.Towards an Aero-Propulso-Servo-Elasticity Analysis of a Commercial Supersonic Transport[R].AIAA2016-1320.
[8] Scharnhorst R K.Characteristics of Future Military Aircraft Propulsion Systems[R].AIAA2013-0466.
[9] Bradley M,Bowcutt K,McComb J.Revolutionary Turbine Accelerator (RTA) Two-Stage-to-Orbit (TSTO) Vehicle Study[R].AIAA2002-3902.
[10] Lee J,Winslow R,Buehrle R J.The GE-NASA RTA Hyperburner Design and Development[R].NASA TM-2005-213803.
[11] Evans A L,Follen G,Naiman C,et al.Numerical Propulsion System Simulation’s National Cycle Program[R].AIAA98-3113.
[12] Alexiou A,Baalbergen E H,Kogenhop O,et al.Advanced Capabilities for Gas Turbine Engine Performance Simulation[R].ASME GT2007-27086.
[13] Pilet J,Lecordix J L,Nicolas G,et al.Towards a Fully Coupled Component Zooming Approach in Engine Performance Simulation[R].ASME GT2011-46320.
[14] Templalexis I,Alexiou A,Pachicis V,et al.Direct Coupling of a Turbofan Engine Performance Simulation[R].ASME GT2016-56617.
[15] Connolly J W,Kopasakis G,Carlsonz J,et al.Nonlinear Dynamic Modeling of a Supersonic Commercial Transport Turbo-Machinery Propulsion System for Aero-Propulso-Servo-Elasticity Research[R].NASA TM-2012-217273.
[16] Connolly J W,Friedlander D.Kopasakis G. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model[R].NASA TM-2015-218479.
[17] 周 红.变循环发动机特性分析及其与飞机一体化设计研究[D].西安:西北工业大学,2016.
[18] 彭利方.变循环发动机建模与非线性控制方法研究[D].南京:南京航空航天大学,2015.
[19] 刘佳鑫,王志强,严 伟,等.单/双涵道模式转换过程的数值研究[J].推进技术,2017,38(8):1699-1708.
[20] 刘 勤,李刚团,黄红超.三外涵变循环发动机循环参数匹配模拟[J].航空发动机,2016,42(6):51-54.
[21] 韩 佳,苏桂英,张跃学.基于近似模型的变循环发动机稳态性能分析及优化[J].燃气涡轮试验与研究,2017,30(3):16-20.
[22] 刘宝杰,贾少锋,于贤君.变循环核心压气机可调特性的数值研究[J].工程热物理学报,2016,37(9):1850-1855.
[23] 刘宝杰,贾少锋,于贤君.变循环发动机前可调涵道引射器的通流计算方法[J].推进技术,2017,38(8):1689-1698.(LIU Bao-jie, JIA Shao-feng, YU Xian-jun.Throughflow Calculation Method of Variable Cycle Engine Forward Area Bypass Injector[J].2017,38(8):1689-1698.)
[24] Byvey P,Bosschaerts W,Villace V F,et al.Study of an Airbreathing Variable Cycle Engine[R].AIAA2011-5758.
[25] Joachim K.How to Get Component Maps for Aircraft Gas Turbine Performance Calculations[R].ASME 96-GT-164.
[26] Sullivan T J,Parker D E.Design Study and Performance Analysis of a High-Speed Mulistage Variable-Geometry Fan for a Variable Cycle Engine[R].NASA CR-159545.
[27] Johnsen I A,Bullock R O.Aerodynamic Design of Axial-Flow Compressors,Volume 2[R].NACA RM-E56B03A.
[28] Aungier R.Axial-Flow Compressor-a Strategy for Aerodynamic Design and Analysis[M].New York:ASME Press,2003.
[29] Cetin M,Uecer A S,Hirsch C,et al.Application of Modified Loss and Deviation Correlations to Transonic Axial Compressors[R].AGARD-R-745,1987.
[30] 祝启鹏,高丽敏,李瑞宇,等.跨声速多级轴流压气机特性预估及分析[J].推进技术,2014,35(10):1342-1348.
[31] Boyer K M.An Improved Streamline Curvature Approach for Off-Design Analysis of Transonic Compression Systems[D].Virginia:Virginia Polytechnic Institute and State University,2001.
[32] Miller G R,Lewis G M,Hartmann M J.Shock Losses in Transonic Compressor Blade Rows[J].Journal of Engineering for Power,1961,83(3):235-241.
[33] 楚武利,刘前智,胡春波.航空叶片机原理[M].西安:西北工业大学出版社,2009.