Simulation Analysis of Thermal Characteristics of RF Ion Thruster
1.National Key Laboratory of Science and Technology on Vacuum Technology and Physics, Lanzhou Institute of Physics,Lanzhou730000,China;2.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha410073,China
LI Xing-da1,LI Jian-peng1,ZHANG Xing-min1,ZHANG Tian-ping1,LONG Jian-fei2. Simulation Analysis of Thermal Characteristics of RF Ion Thruster[J]. Journal of Propulsion Technology, 2020, 41(3): 707-714.
[1] Loeb H W,Schartner K H,Meyer B K,et al.Forty Years of Giessen EP-Activities and the Recent RIT-Microthruster Development[C].Princeton:The 29th International Electric Propulsion Conference,2005.
[2] Killinger R,Leiter H,Kukies R.RITA Ion Propulsion Systems for Commercial and Scientific Applications[R].AIAA2007-5200.
[3] Feili D,Loeb H W,Schartner K H,et al.Testing of New μN-RITs at Giessen[R].AIAA2005-4263.
[4] Killinger R,Bassner H.High Performance RF-Ion Thruster Development(RIT XT)-Performance and Durability Test Results[R].AIAA2001-3488.
[5] Tsay M M T.Two-Dimensional Numerical Modeling of Radio-Frequency Ion Engine Discharge[D].USA:Massachusetts Institute of Technology,2010.
[6] Tsay M,Model J,Barcroft C,et al.Integrated Testing of Iodine BIT-3 RF Ion Propulsion System for 6U CubeSat Applications[C].Georgia:The 35th International Electric Propulsion Conference,2017.
[7] Antropov N N,Akhmetzhanov R V,Bogatyy A V,et al.Experimental Research of Radio-Frequency Ion Thruster[J].Thermal Engineering,2015,63(13):957-963.
[8] Kokal U,Turan N,Celik M.Design Improvements and Experimental Measurements of BURFIT-80 RF Ion Thruster[R].AIAA2017-4891.
[9] Goebel D M.Analytical Discharge Performance Model for RF and Kaufman Ion Thrusters[R].AIAA2007-5246.
[10] Gartner W,Lotz B,Meyer B K.3D Thermal Simulation of a μN-RIT[C].Washington D C:The 33rd International Electric Propulsion Conference,2013.
[11] Dobkevicius M,Feili D,Muller G.Comprehensive Radio-Frequency Ion Thruster Electromagnetic and Thermal Modelling[C].Hyogo-Kobe:The 34th International Electric Propulsion Conference,2015.
[12] Abgaryan V K,Kruglov K I.Thermal Model of RF Ion Thrusters and Ion Sources[J].Journal of Surface Investigation,X-Ray,Synchrotron and Neutron Techniques,2015,9(6):1137-1143.
[13] Lieberman M A,Lichtenberg A J.Principles of Plasma Discharges and Materials Processing[M].USA:John Wiley & Sons Inc.,2005.
[14] Turkoz E,Celik M.2D Axisymmetric Fluid and Electromagnetic Models for Inductively Coupled Plasma (ICP) in RF Ion Thrusters[C].Washington D C:The 33rd International Electric Propulsion Conference,2013.
[15] Kawamura E,Graves D B,Lieberman M A.Fast 2D Hybrid Fluid-Analytical Simulation of Inductive/Capacitive Discharges[J].Plasma Sources Science and Technology,2011,20(3).
[16] Chabert P,Braithwaite N.Physics of Radio-Frequency Plasmas[M].UK:Cambridge University Press,2011.
[17] Noord J L V.NEXT Ion Thruster Thermal Model[R].AIAA2007-5218.
[18] 孙明明,张天平,陈娟娟,等.LIPS-200环型会切磁场离子推力器热模型计算分析[J].推进技术,2015,36(8):1274-1280.
[19] 孙明明,顾 左,马永斌,等.LHT-100霍尔推力器热特性模拟分析[J].推进技术,2014,35(12):1715-1721.