LAI Zheng-xin, XIAO Yin-li, SONG Wen-yan. Large Eddy Simulation of Low Swirl Combustion Based on PaSR Model[J]. Journal of Propulsion Technology, 2020, 41(10): 2260-2275.
[1] Sarpkaya T. Turbulent Vortex Breakdown[J]. Physics of Fluid, 1995, 7(10): 2301-2303.
[2] Spencer A, McGuirk J, Midgley K. Vortex Breakdown in Swirling Fuel Injector Flows[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(2).
[3] Lieuwen T, Torres H, Johnson C, et al. A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors [J]. Journal of Engineering for Gas Turbines and Power, 2001, 123(1): 182-189.
[4] Lieuwen T. Modeling Premixed Combustion-Acoustic Wave Interactions: A Review[J]. Journal of Propulsion and Power, 2003, 19(5): 765-781.
[5] Cheng R K, Yegian D T, Miyasato M, et al. Scaling and Development of Low-Swirl Burners for Low Emission Furnaces and Boilers [J]. Proceedings of the Combustion Institute, 2000, 28(1): 1305-1313.
[6] Mehmet Salih Celek, Pinarbasi Ali. Investigations on Performance and Emission Characteristics of an Industrial Low Swirl Burner while Burning Natural Gas, Methane, Hydrogen-Enriched Natural Gas and Hydrogen as Fuels[J]. International Journal of Hydrogen Energy, 2018, 43(2): 1194-1207.
[7] Cheng R K, Littlejohn D, Nazeer W A, et al. Laboratory Studies of the Flow Field Characteristics of Low-Swirl Injectors for Adaptation to Fuel-Flexible Turbines[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(2): 277-285.
[8] Nazeer W, Smith K, Sheppard P, et al. Full Scale Testing of a Low Swirl Fuel Injector Concept for Ultra-Low NOx Gas Turbine Combustion Systems[R]. ASME GT 2006-90150.
[9] Plessing T, Kortschik C, Peters N, et al. Measurements of the Turbulent Burning Velocity and the Structure of Premixed Flames on a Low-Swirl Burner [J]. Proceedings of the Combustion Institute, 2000, 28(1): 359-366.
[10] Day M, Tachibana S, Bell J, et al. A Combined Computational and Experimental Characterization of Lean Premixed Turbulent Low Swirl Laboratory Flames I: Methane Flames[J]. Combustion and Flame, 2012, 159(1): 275-290.
[11] Day M, Tachibana S, Bell J, et al. A Combined Computational and Experimental Characterization of Lean Premixed Turbulent Low Swirl Laboratory Flames II: Hydrogen Flames[J]. Combustion and Flame, 2015, 162(5): 2148-2165.
[12] Karthik P, Noble D, Seitzman J M, et al. Measurement of Flame Characteristics of a Low Swirl Burner at High Pressures and Velocities[R]. AIAA 2011-234.
[13] Cheng R K, Littlejohn D. Laboratory Study of Premixed H2-Air and H2-N2-Air Flames in a Low-Swirl Injector for Ultra-Low Emission Gas Turbines [J]. Journal of Engineering for Gas Turbines and Power, 2007, 129(3):383-393.
[14] Huang Y, Ratner A. Experimental Investigation of Thermoacoustic Coupling for Low-Swirl Lean Premixed Flames [J]. Journal of Propulsion and Power, 2009, 25(2): 365-373.
[15] Tachibana S, Kanai K, Yoshida S, et al. Combined Effect of Spatial and Temporal Variations of Equivalence Ratio on Combustion Instability in a Low-Swirl Combustor[J]. Proceedings of the Combustion Institute, 2015, 35(3): 3299-3308.
[16] Davis D W, Therkelsen P L, Littlejohn D, et al. Effects of Hydrogen on the Thermo-Acoustics Coupling Mechanisms of Low-Swirl Injector Flames in a Model Gas Turbine Combustor[J]. Proceedings of the Combustion Institute, 2013, 34(2): 3135-3143.
[17] Emadi M, Kaufman K, Burkhalter M W, et al. Examination of Thermo-Acoustic Instability in a Low Swirl Burner [J]. International Journal of Hydrogen Energy, 2015, 40(39): 13594-13603.
[18] 邓洋波, 刘 阳, 朱公志. 低旋流燃烧和流动特性数值模拟研究[J]. 大连海事大学学报, 2009, 35(4): 99-102.
[19] 邓洋波, 宋德彦, 徐 震, 等. 有限空间内低旋流流动与燃烧特性[J]. 航空动力学报, 2015, 30(7): 1546-1553.
[20] Ouali S, Bentebbiche A, Belmrabet T. Numerical Simulation of Methane-Air Equivalence Ration Effect on Premixed Low Swirl Stabilized Flame[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37(2): 747-760.
[21] Ouali S, Bentebbiche A, Belmrabet T. Numerical Simulation of Swirl and Methane Equivalence Ratio Effects on Premixed Turbulent Flames and NOx Apparitions[J]. Journal of Applied Fluid Mechanics, 2016, 9(2): 987-998.
[22] 柳伟杰, 葛 冰, 田寅申, 等. 当量比对甲烷预混低旋流燃烧的影响[J]. 燃烧科学与技术, 2014, 20(1): 65-69.
[23] 陈 立, 李祥晟, 杨 诏, 等. 气流入口条件对低旋流燃烧火焰稳定性的影响[J]. 西安交通大学学报, 2016, 50(5): 114-119.
[24] 陈 立, 李祥晟. 低旋流CH4/H2火焰的燃烧特性及稳定性机制研究[J]. 西安交通大学学报, 2017, 51(1): 72-78.
[25] Dinesh K R, Kirkpatrick M. Study of Jet Precession, Recirculation and Vortex Breakdown in Turbulent Swirling Jets Using LES[J]. Computers and Fluids, 2009, 38(6): 1232-1242.
[26] Wang Z, Xu Y, Zhou Z, et al. LES Investigation of Swirl Intensity Effect on Unconfined Turbulent Swirling Premixed Flame[J]. China Science Bulletin, 2014, 59(33): 4550-4558.
[27] Petersson P, Olofsson J, Brackman C, et al. Simultaneous PIV/OH-PLIF, Rayleigh Thermometry/OH-PLIF and Stereo PIV Measurements in a Low-Swirl Flame[J]. Journal of Applied Optics, 2007, 46(19): 3928-3936.
[28] Nogenmyr K J, Petersson P, Bai X S, et al. Large Eddy Simulation and Experiments of Stratified Lean Premixed Methane/Air Turbulent Flames[J]. Proceedings of the Combustion Institute, 2007, 31(1): 1467-1475.
[29] Nogenmyr K J, Fureby C, Bai X S, et al. Large Eddy Simulation and Laser Diagnostic Studies on a Low Swirl Stratified Premixed Flame[J]. Combustion and Flame, 2009, 156(1): 25-36.
[30] Nogenmyr K J, Petersson P, Bai X S, et al. Structure and Stabilization Mechanism of a Stratified Premixed Low Swirl Flame[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1567-1574.
[31] Carlsson H, Nordstr?m E, Bohlin A, et al. Large Eddy Simulations and Rotational CARS/PIV/PLIF Measurements of a Lean Premixed Low Swirl Stabilized Flame [J]. Combustion and Flame, 2014, 161(10): 2539-2551.
[32] Carlsson H, Carlsson C, Fuchs L, et al. Large Eddy Simulation and Extended Dynamic Mode Decomposition of Flow-Flame Interaction in a Lean Premixed Low Swirl Stabilized Flame [J]. Flow Turbulence and Combustion, 2014, 93(3): 505-519.
[33] Shahsavari M, Farshchi M, Arabnejad M. Large Eddy Simulations of Unconfined Non-Reacting and Reacting Turbulent Low Swirl Jets [J]. Flow Turbulence and Combustion, 2017, 98(3): 817-840.
[34] Menon S, Yeung P K ,Kim W W. Effect of Subgrid Models on the Computed Interscale Energy Transfer in Isotropic Turbulence[J]. Computers and Fluids, 1996, 25(2): 165-180.
[35] Shahsavari M, Farshchi M. Large Eddy Simulation of Low Swirl Flames under External Flow Excitations[J]. Flow Turbulence and Combustion, 2018, 100(1): 249-269.
[36] Germano M, Piomelli U, Moin P, et al. A Dynamic Subgrid-Scale Eddy Viscosity Model [J]. Physics of Fluids, 1991, 3(3): 1760-1765.
[37] Gicquel L Y M, Staffelbach G, Poinsot T. Large Eddy Simulations of Gaseous Flames in Gas Turbine Combustion Chambers[J]. Progress in Energy and Combustion Science, 2012, 38(6): 782-817.
[38] Chomiak J, Karlsson A. Flame Liftoff in Diesel Sprays [J]. Symposium (International) on Combustion, 1996, 26(2): 2557-2564.
[39] García-Villalba M, Fr?hlich J, Rodi W. Identification and Analysis of Coherent Structures in the Field of a Turbulent Unconfined Annular Swirling Jet Using Large Eddy Simulation[J]. Physics of Fluids, 2006, 18(5).
[40] Sweeney M, Hochgreb S, Dunn M, et al. The Structure of Turbulent Stratified and Premixed Methane/Air Flames I: Non-Swirling Flows[J]. Combustion and Flame, 2012, 159(9): 2896-2911.
[41] Jeong J, Hussain F. On the Identification of a Vortex [J]. Journal of Fluid Mechanics, 1995, 332(1): 339-363.