GONG Chun-ming1,LIU Jian-wen1,GUO Jin-xin1,ZHANG Bo1. Combustion Mechanism Modelling of Ethylene and Its Application in Numerical Study of High Speed Turbulent Combustion[J]. Journal of Propulsion Technology, 2020, 41(3): 582-594.
[1] Xu K,Meng H.Modelling and Simulation of Supercritical-Pressure Turbulent Heat Transfer of Aviation Kerosene with Detailed Pyrolytic Chemical Reactions[J].Energy and Fuels,2015,29 (7):4137-4149.
[2] Dharavath M,Manna P,Chakraborty D.Numerical Exploration of Mixing and Combustion in Ethylene Fueled Scramjet Combustor[J].Acta Astronautica,2015,117(1):305-318.
[3] Dharavath M,Manna P,Chakraborty D.Tip-to-Tail Numerical Simulation of a Hypersonic Air-Breathing Engine with Ethylene Fuel[J].Acta Astronautica,2016,128(1):107-118.
[4] Cai Z,Wang Z,Sun M,et al.Investigation of the Flow Field Characteristics in a Scramjet Combustor with the Rearwall-Expansion Cavity [R].AIAA2017-2148.
[5] Liu X,Cai Z,Tong Y.Investigation of Transient Ignition Process in a Cavity Based Scramjet Combustor Using Combined Ethylene Injectors[J].Acta Astronautica.2017,137(1):1-7.
[6] Metcalfe W K,Burke S M,Ahmed S S,et al.A Hierarchical and Comparative Kinetic Modelling Study of C1-C2 Hydrocarbon and Oxygenated Fuels[J].International Journal of Chemical Kinetics,2013,45(10):638-675.
[7] Wang H,You X,Joshi A V,et al.High-Temperature Combustion Reaction Model of H2/CO/C1-C4Compounds(USC Mech Version II)[EB/OL].http://ignis.usc.edu/USC_Mech_II.htm.,2007.
[8] Lu T,Law C K.Toward Accommodating Realistic Fuel Chemistry in Large-Scale Computations [J].Progress in Energy and Combustion Science,2009,35(2):192-215.
[9] Lu T,Law C K.A Directed Relation Graph Method for Mechanism Reduction [J].Proceedings of the Combustion Institute,2005,30(1):1333-1341.
[10] Pepiot-Desjardins P,Pitsch H.An Efficient Error-Propagation Based Reduction Method for Large Chemical Kinetic Mechanisms[J].Combustion and Flame,2008,154(1):67-81.
[11] Sun W,Chen Z,Gou X,et al.A Path Flux Analysis Method for the Reduction of Detailed Chemical Kinetic Mechanisms[J].Combustion and Flame,2010,157(7):1298-1307.
[12] Esposito G,Chelliah H K.Skeletal Reaction Models Based on Principal Component Analysis: Application to Ethylene-Air Ignition, Propagation, and Extinction Phenomena [J].Combustion and Flame,2011,158(3):477-489.
[13] Valorani M,Creta F,Goussis D A,et al.An Automatic Procedure for the Simplification of Chemical Kinetic Mechanisms Based on CSP[J].Combustion and Flame,2006,146(1):29-51.
[14] Lovas T.Automatic Generation of Skeletal Mechanisms for Ignition Combustion Based on Level of Importance Analysis[J].Combustion and Flame,2009,156(7):1348-1358.
[15] 蒋 勇,邱 榕.复杂化学机理简化的关联水平法[J].化学学报,2010,68(5):403-412.
[16] Gao X,Yang S,Sun W.A Global Pathway Selection Algorithm for the Reduction of Detailed Chemical Kinetic Mechanisms [J].Combustion and Flame,2016,167(1):238-247.
[17] Liu A K,Jiao Y,Li S H,et al.Flux Projection Tree Method for Mechanism Reduction[J].Energy and Fuels,2014,28(8):5426-5433.
[18] 刘爱科,李书豪,王 繁,等.乙烯氧化动力学机理简化[J].推进技术,2015,36 (1):142-148.
[19] Whitehouse L E,Tomlin A S,Pilling M J.Systematic Reduction of Complex Tropospheric Chemical Mechanisms, Part I: Sensitivity and Time-Scale Analyses[J].Atmospheric Chemistry and Physics,2004,4(7):2025-2056.
[20] Jones W P,Rigopoulos S.Reduced Chemistry for Hydrogen and Methanol Premixed Flames via RCCE[J].Combustion Theory and Modelling,2007,11(5):755-780.
[21] Maas U,Pope S B.Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space [J].Combustion and Flame,1992,88(3):239-264.
[22] Turanyi T,Tomlin A S,Pilling M J,et al.On the Error of the Quasi-Steady-State Approximation [J].Journal of Physical Chemistry,1993,97(1):163-172.
[23] 于 浩,陈 正,苟小龙.乙烯氧化机理的简化[J].工程热物理学报,2013,34(2):376-379.
[24] 李 瑞,何国强,秦 飞,等.乙烯燃烧化学动力学机理的简化与分析[J].航空动力学报,2018,33(9):2074-2083.
[25] Peters N.Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion[J].Progress in Energy and Combustion Science,1984,10(3):319-339.
[26] Ertesvag I S,Magnussen B F.The Eddy Dissipation Turbulence Energy Cascade Model[J].Combustion Science and Technology,2000,159(1):213-235.
[27] Westbrook C K,Mizobuchi Y,Poinsot T J,et al.Computational Combustion[J].Proceedings of the Combustion Institute,2005,30(1):125-157.
[28] Goldsmith C F,Magoon G.Green W H, Database of Small Molecule Thermochemistry for Combustion [J]Journal of Physical Chemistry A,2012.116(36):9033-9057.
[29] Ravi S,Sikes T G,Morones A,et al.Comparative Study on the Laminar Flame Speed Enhancement of Methane with Ethane and Ethylene Addition [J].Proceedings of the Combustion Institute,2015,35(1):679-686.
[30] Park O,Veloo P S,Egolfopoulos F N.Flame Studies of C2 Hydrocarbons[J].Proceedings of the Combustion Institute,2013,34 (1):711-718.
[31] Hirasawa T,Sung C,Joshi A,et al.Determination of Laminar Flame Speeds Using Digital Particle Image Velocimetry: Binary Fuel Blends of Ethylene, N-Butane, and Toluene[J].Proceedings of the Combustion Institute,2002,29 (2):1427-1434.
[32] Penyazkov O G,Sevrouk K L,Tangirala V,et al.High-Pressure Ethylene Oxidation Behind Reflected Shock Waves[J].Proceedings of the Combustion Institute,2009,32 (2):2421-2428.
[33] Hidaka Y,Nishimori T,Sato K,et al.Shock-Tube and Modelling Study of Ethylene Pyrolysis and Oxidation[J].Combustion and Flame,1999,117(4):755-776.
[34] Delfau J L,Biet J,Idir M,et al.Experimental and Numerical Study of Premixed, Lean Ethylene Flames[J].Proceedings of the Combustion Institute,2007,31(1):357-365.
[35] Gerasimov I E,Knyazkov D A,Yakimov S A,et al.Structure of Atmospheric-Pressure Fuel-Rich Premixed Ethylene Flame with and Without Ethanol [J].Combustion and Flame,2012,159(5):1840-1850.
[36] Zhong Z,Wang Z,Sun M.Effects of Fuel Cracking on Combustion Characteristics of a Supersonic Model Combustor[J].Acta Astronautica,2015,110(1):1-8.
[37] Menter F R.Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications[J].AIAA Journal,1994,32(8):1598-1605.
[38] Pope S B.Computationally Efficient Implementation of Combustion Chemistry Using In-Situ Adaptive Tabulation[J].Combustion Theory and Modelling,1997,1(1):41-63.