Effects of Reaction Mechanism on Stabilization of Turbulent Premixed Pilot Flame
1.Aero Engine Academy of China,Beijing 101304,China;2.College of Power and Energy Engineering,Harbin Engineering University,Harbin 150001,China;3.Department of Mechanics and Aerospace Engineering,Southern University of Science and Technology, Shenzhen 518055,China
LIU Ying-jie1, LIU Xiao2, ZHOU Bo3, YOU Bin-chuan2, ZHENG Hong-tao2. Effects of Reaction Mechanism on Stabilization of Turbulent Premixed Pilot Flame[J]. Journal of Propulsion Technology, 2020, 41(10): 2276-2282.
[1] 焦树建. 燃气轮机燃烧室[M]. 北京:机械工业出版社, 1981.
[2] 邓远灏, 颜应文, 朱嘉伟, 等. LPP 低污染燃烧室两相喷雾燃烧数值研究[J]. 推进技术, 2013, 34(3): 353-361.
[3] 刘 强, 索建秦, 梁红侠, 等. 直混燃烧与 LPP 组合燃烧室数值研究[J]. 航空动力学报, 2012, 27(11): 2448-2454.
[4] 刘 潇. 低排放燃烧室设计及预混燃烧特性研究[D]. 哈尔滨:哈尔滨工程大学, 2017.
[5] Komarek T, Polifke W. Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(6).
[6] Dunn M J, Masri A R, Bilger R W, et al. The Compositional Structure of Highly Turbulent Piloted Premixed Flames Issuing into a Hot Coflow[J]. Proceedings of the Combustion Institute, 2009, 32(2): 1779-1786.
[7] Dunn M J, Masri A R, Bilger R W. A New Piloted Premixed Jet Burner to Study Strong Finite-Rate Chemistry Effects[J]. Combustion and Flame, 2007, 151(1): 46-60.
[8] Zhou B, Brackmann C, Li Q, et al. Distributed Reactions in Highly Turbulent Premixed Methane/Air Flames, Part I: Flame Structure Characterization[J]. Combustion and Flame, 2015, 162(7): 2937-2953.
[9] Zhou B, Brackmann C, Li Z, et al. Simultaneous Multi-Species and Temperature Visualization of Premixed Flames in the Distributed Reaction Zone Regime[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1409-1416.
[10] Weigand P, Meier W, Duan X R, et al. Investigations of Swirl Flames in a Gas Turbine Model Combustor: I. Flow Field, Structures, Temperature, and Species Distributions[J]. Combustion and Flame, 2006, 144(1): 205-224.
[11] Meier W, Duan X R, Weigand P. Investigations of Swirl Flames in a Gas Turbine Model Combustor: II. Turbulence-Chemistry Interactions[J]. Combustion and Flame, 2006, 144(1): 225-236.
[12] Meier W, Weigand P, Duan X R, et al. Detailed Characterization of the Dynamics of Thermoacoustic Pulsations in a Lean Premixed Swirl Flame[J]. Combustion and Flame, 2007, 150(1): 2-26.
[13] 刘 潇, 龚 诚, 李智明, 等. 大涡模拟燃烧模型在扩散火焰中的对比研究[J]. 哈尔滨工程大学学报, 2018, 39(3): 496-502.
[14] Jones W P, Marquis A J, Vogiatzaki K. Large-Eddy Simulation of Spray Combustion in a Gas Turbine Combustor[J]. Combustion and Flame, 2014, 161(1): 222-239.
[15] Subramanian V, Domingo P, Vervisch L. Large Eddy Simulation of Forced Ignition of an Annular Bluff-Body Burner[J]. Combustion and Flame, 2010, 157(3): 579-601.
[16] Cao R R, Pope S B. The Influence of Chemical Mechanisms on PDF Calculations of Nonpremixed Piloted Jet Flames[J]. Combustion and Flame, 2005, 143(4): 450-470.
[17] Smooke M D, Puri I K, Seshadri K. A Comparison Between Numerical Calculations and Experimental Measurements of the Structure of a Counterflow Diffusion Flame Burning Diluted Methane in Diluted Air[C]. Munich: Symposium (International) on Combustion, 1988.
[18] Sung C J, Law C K, Chen J Y. Further Validation of an Augmented Reduced Mechanism for Methane Oxidation: Comparison of Global Parameters and Detailed Structure[J]. Combustion Science and Technology, 2000, 156(1): 201-220.
[19] Duwig C, Nogenmyr K J, Chan C, et al. Large Eddy Simulations of a Piloted Lean Premix Jet Flame using Finite-Rate Chemistry[J]. Combustion Theory and Modelling, 2011, 15(4): 537-568.