Experimental Investigation on Integrated Cooling Efficiency of Turbine Blade
1.College of Energy and Power,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;2.Beijing Power Machinery Institute,Beijing 100074,China
[1] 张靖周, 常海萍. 传热学[M]. 北京:科学出版社, 2015.
[2] 唐学智, 李录平, 黄章俊, 等. 重型燃气轮机涡轮叶片寿命分析研究进展[J]. 燃气轮机技术, 2015, 28(3): 6-13.
[3] Han J C, Dutta S, Ekaad S. Gas Turbine Heat Transfer and Cooling Technology[M]. USA:CRC Press, 2012.
[4] 周明轩, 薛树林, 贺宜红, 等. 高阻塞比肋化通道对流换热特性实验研究[J]. 推进技术, 2018, 39(2):335-341.
[5] 王培枭, 孙瑞嘉, 钟滨涛, 等. 叶片前腔高阻塞比肋化通道换热特性实验研究[J]. 重庆理工大学学报(自然科学), 2019, 33(4): 174-181.
[6] Chyu M K, Yen C H, Siw S S. Comparison of Heat Transfer from Staggered Pin Fin Arrays with Circular, Cubic and Diamond Shaped Elements[C]. Montreal: ASME Turbo Expo: Power for Land, Sea, and Air, 2007.
[7] Dogrouz M B, Urdaneta M, Ortega A. Experiments and Modeling of the Hydraulic Resistance and Heat Transfer of In-Line Square Pin Fin Heat Sinks with Top By-Pass Flow[J]. International Journal of Heat and Mass Transfer, 2005, 48(23-24): 5058-5071.
[8] Chyu M K, Siw S C, Moon H. Effects of Height-To-Diameter Ratio of Pin Element on Heat Transfer from Staggered Pin-Fin Arrays[C]. Florida: ASME Turbo Expo: Power for Land, Sea, and Air, 2009.
[9] Liu Z, Feng Z. Numerical Simulation on the Effect of Jet Nozzle Position on Impingement Cooling of Gas Turbine Blade Leading Edge[J]. International Journal of Heat and Mass Transfer, 2011, 54(23-24): 4949-4959.
[10] Taslim M E, Bethka D D. Experimental and Numerical Impingement Heat Transfer in an Airfoil Leading-Edge Cooling Channel with Crossflow[J]. Journal of Turbomachinery, 2009, 131(1).
[11] Taslim M E, Khanicheh A A. Experimental and Numerical Study of Impingement on an Airfoil Leading-Edge with and Without Showerhead and Gill Film Holes[J]. Journal of Turbomachinery, 2006, 128(2): 310-320.
[12] 姚春意, 朱惠人, 付仲仪, 等. 主流湍流度对涡轮导叶吸力面W型气膜孔冷却效率影响的实验研究[J]. 推进技术, 2019, 40(12): 2783-2791.
[13] 贺宜红, 刘存良, 宋 辉, 等. 不同湍流度下吹风比对涡轮导向叶片吸力面气膜冷却的影响[J]. 航空动力学报, 2018, 33(3): 521-529.
[14] 付仲议, 朱惠人, 姚春意, 等. 亚声速涡轮导叶前缘气膜冷却特性实验研究[J]. 推进技术, 2019, 40(3): 583-592.
[15] 谭晓茗, 朱兴丹, 郭 文, 等. 涡轮叶片前缘气膜冷却换热实验[J]. 航空动力学报, 2014, 29(11): 2672-2678.
[16] Boyce M P. Gas Turbine Engineering Handbook[M]. UK: Butterworth-Heinemann, Elsevier, 2011.
[17] Bunker R S. A Review of Shaped Hole Turbine Film-Cooling Technology[J]. Journal of Heat Transfer, 2005, 127(4): 441- 453.
[18] 常 艳, 杨卫华, 张靖周. 突片形状对气膜冷却效率的影响[J]. 南京航空航天大学学报, 2016, 48(3):317-325.
[19] 蓝占赣. 涡轮叶片综合冷却效果模拟实验方法研究[D]. 南京:南京航空航天大学, 2016.
[20] 邵 静, 李 杰, 吴伟亮. 复合冷却涡轮导叶的气热耦合数值模拟[J]. 科学技术与工程, 2014, 14(5).
[21] Venkatasubramanya S, Vasudey S A, Chandel S. Experimental Evaluation of Cooling Effectiveness of High Pressure Turbine Nozzle Guide Vane[C]. Mumbai: ASME 2012 Gas Turbine India Conference, 2012.
[22] Rhee D H, Kang Y S, Cha B J, et al. Overall Cooling Effectiveness Measurement on Pressure Side Surface of the Nozzle Guide Vane with Optimized Film Cooling Hole Arrangements[C]. North Carolina: Turbomachinery Technical Conference and Exposition, 2017.
[23] 李广超, 莫唯书, 张 魏, 等. 涡轮导向叶片综合冷却特性实验研究[J]. 推进技术, 2018, 39(12): 2772-2778.
[24] 马 超, 黄名海, 葛 冰, 等. 高温风洞中空冷涡轮叶片冷却特性的实验研究[J]. 推进技术, 2016, 37(3): 496-503.
[25] 王培枭, 郭昊雁, 李 杰, 等. 涡轮导向叶片综合冷却效率实验研究[J]. 推进技术, 2019, 40(7): 1568-1576.
[26] 杨 立. 红外热像仪测温计算与误差分析[J]. 红外技术, 1999, (4): 20-24.
[27] 常国强, 常海萍, 王寅会, 等. 曲面红外测温方向性误差分析与修正方法[J]. 航空动力学报, 2010, 25(2): 302-307.