Structure Optimization of Micro-Newton Class Radio-Frequency Ion Thruster
1.National Micro Gravity Laboratory,Institute of Mechanics,CAS,Beijing 100190,China;2.School of Engineering Sciences,University of Chinese Academy of Science,Beijing 100049,China
MA Long-fei1,2, HE Jian-wu1, YANG Chao1,2, DUAN Li1,2, KANG Qi1,2. Structure Optimization of Micro-Newton Class Radio-Frequency Ion Thruster[J]. Journal of Propulsion Technology, 2021, 42(2): 474-480.
[1] Abbott B P, Abbott R, Abbott T D, et al. First Search for Gravitational Waves from Known Pulsars with Advanced LIGO[J]. Astrophysical Journal, 2017, 839(12).
[2] Karsten D. A Proposal in Response to the ESA Call for L3 Mission Concepts[M]. Germany: Laser Interferometer Space Antenna, 2017.
[3] European Space Agency. NGO Revealing a Hidden Universe: Opening a New Chapter of Discovery[R]. Germany: ESA, 2011.
[4] European Space Agency. The ESA-L3 Gravitational Wave Mission[R]. Germany: ESA, 2016.
[5] Wu Y L. Taiji Program in Space and Unified Field Theory in Hyper-Spacetime[C]. Beijing: International Symposium on Gravitational Wave, 2017.
[6] Collingwood C. Investigation of a Miniature Differential Ion Thruster[D]. UK: University of Southampton, 2011.
[7] 贺建武. 射频离子微推力器工作机理及性能优化研究[D]. 北京:中国科学院大学力学研究所, 2017.
[8] 曾明. 微牛级会切场等离子体推力器设计及实验研究[D]. 哈尔滨:哈尔滨工业大学, 2018.
[9] Loeb H W, Schartner K H, Meyer B K, et al. Forty Years of Giessen EP-Activities and the Recent RIT-Microthruster Development[C]. Princeton: 29th International Electric Propulsion Conference, 2005.
[10] Altmann C, Leiter H, Kukies R. The RIT-μX Miniaturized Ion Engine System Way to TRL5 for an Extended Thrust Range[C]. Kobe: 34th International Electric Propulsion Conference, 2015.
[11] Hruby P, Demmons N, Courtney D, et al. Overview of Busek Electric Propulsion[C]. Vienna: 36th International Electric Propulsion Conference, 2019.
[12] Tsay M, Hohman K, Rosenblad N, et al. Micro Radio-Frequency Ion Propulsion System[C]. Atlanta: 48th Joint Propulsion Conference, 2012.
[13] Trudel T A, Bilén S G, Micci M M. Design and Performance Testing of a 1-cm Miniature Radio-Frequency Ion Thruster[C]. Ann Arbor: 31st International Electric Propulsion Conference, 2009.
[14] Watanabe H, Nakabayashi T, Kasagami S, et al. Experimental Investigation of Inductively Coupled Plasma Cathode for the Application to Ion Thrusters[C]. San Diego: 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2013.
[15] Hiramoto K, Takao Y. Investigation of Ion Beam Extraction Mechanism for Higher Thrust Density of Ion Thrusters[J]. Transactions of the Japan Society for Aeronautical & Space Sciences Aerospace Technology Japan, 2016, 14(30): 57-62.
[16] Antropov N N, Akhmetzhanov R V, Bogatyy A V, et al. Experimental Research of Radio-Frequency Ion Thruster[J]. Thermal Engineering, 2016, 63(13): 957-963.
[17] Ito S, Nakamura T, Nishida H, et al. Performance of RF Plasma Thruster for Various Magnetic Field Configurations by Permanent Magnets[C]. Kobe: Joint Conference of 30th International Symposium on Space Technology and Science, 2015.
[18] 吴辰宸, 孙新锋, 顾 左, 等. 射频离子推力器放电与引出特性调节规律仿真与实验研究[J]. 推进技术. 2019, 40(1): 232-240.
[19] 蔡 建, 杨景华, 贾少霞, 等. 碘工质射频离子微推进技术研究[C]. 长沙:第14届中国电推进技术学术研讨会, 2018.
[20] Chabert P, Braithwaite N. Physics of Radio-Frequency Plasmas[M]. UK: Cambridge University Press, 2011.
[21] Trojan F M, Bussweiler K E, Lang H H. Development of the Radio Frequency Microthruster RIT 4[C]. Bethesda: AIAA 9th Electric Propulsion Conference, 1972.
[22] Feili D, Lotz B, Bonnet S, et al. μNRIT-2.5-A New Optimized Microthruster of Giessen University[C]. Ann Arbor: 31st International Electric Propulsion Conference, 2009.
[23] Chung K J, Jung B K, An Y H, et al. Effects of Discharge Chamber Length on the Negative Ion Generation in Volume-Produced Negative Hydrogen Ion Source[J]. Review of Scientific Instruments, 2014, 85(2).
[24] 杨 超, 贺建武, 康 琦, 等. 亚微牛级推力测量系统设计及实验研究[J]. 中国光学, 2019, 12(3): 526-534.