LI Jian-peng, ZHANG Tian-ping, ZHAO Yi-de, LI Juan, GUO De-zhou, HU-Jing. Effects of Anode Current and Screen Grid Voltage on Performance of 5kW Ion Thruster[J]. Journal of Propulsion Technology, 2021, 42(6): 1435-1440.
[1] 杨福全, 王 蒙, 郑茂繁, 等. 10cm离子推力器放电室性能优化研究[J]. 推进技术, 2017, 38(1): 241-246.
[2] Goebel D M, Katz I. Fundamentals of Electric Propulsion: Ion and Hall Thrusters[M]. Hoboken: John Wiley and Sons, 2008.
[3] Ahmed L N, Crofton M W. Surface Modification Measurements in the T5 Ion Thruster Plume[J]. Journal of Propulsion and Power, 1998, 14(3): 336-347.
[4] Rawlin V K, Sovey J S, John H A. An Ion Propulsion System for NASA’s Deep Space Missions[R]. A1AA 99-4612.
[5] Brophy J R, Mareucei M G, Ganapathi C B, et a1. The Ion Propulsion System for Dawn [R]. AIAA 2003-4542.
[6] Rawlin V K. Power Throttling the NS-TAR Ion Thruster[R]. AIAA 95-2515.
[7] Herman D A, Soulas G C, Patterson M J. Performance Evaluation of the Prototype-Model NEXT Ion Thruster[R]. AIAA 2007-5212.
[8] Shastry R, Herman D A, Soulas G C, et al. Status of NASA’s Evolutionary Xenon Thruster (NEXT) Long-Duration Test as of 50000h and 900kg Throughput[R]. IEPC-2013-121.
[9] Tighe W G, Chien K R, Solis E, et a1. Performance Evaluation of the XIPS 25cm Thruster for Application to NASA Discovery Missions[R]. AIAA 2006-4666.
[10] Goebel D M, Martinez-Lavin M, Bond T A. Performance of XIPS Electric Propulsion in On-Orbit Station Keeping of the Boeing 702 Spacecraft[R]. AIAA 2002-4348.
[11] Koroteev A S, Lovtsov A S, Muravlev V A, et al. Development of Ion Thruster IT-500[J]. The European Physical Journal, 2017, 71(120): 1-10.
[12] Snyder J S, Goebel D M, Hofer R R, et al. Performance Evaluation of the T6 Ion Engine[R]. AIAA 2010-7114.
[13] Wallace N C, Corbett M. Optimization and Assessment of the Total Impulse Capability of the T6 Ion Thruster[R]. IEPC-2007-231.
[14] Wallace N C, Mundy D H, Fearn D G, et al. Evaluation of the Performance of the T6 Ion Thruster[R]. AIAA 99-2442.
[15] Herman D A, Soulas G C, Patterson M J. Performance Evaluation of the Prototype Model NEXT Ion Thruster[R]. AIAA 2007-5212.
[16] 李宗良, 高 俊, 刘国西, 等. 小行星探测电推进系统方案研究[J]. 深空探测学报, 2018, 5(4): 347-353.
[17] 孙小菁, 张兴民, 田立成, 等. 小行星探测及采样返回任务电推进系统方案设计[J]. 真空, 2018, 55(1): 40-45.
[18] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真[J]. 物理学报, 2014, 63(18): 18-29.
[19] 王雨玮, 任军学, 吉林桔, 等. 放电电压和屏栅电压对离子推力器性能的影响 [J]. 中国空间科学技术, 2016, 36 (1): 77-84.
[20] 赵以德, 张天平, 黄永杰, 等. 40cm离子推力器宽范围调节实验研究[J], 推进技术, 2018, 39(4): 942-947.
[21] 郑茂繁, 张天平, 孟 伟, 等. 20cm氙离子推力器性能扩展研究[J]. 推进技术, 2015, 36(7): 1116-1120.
[22] Soulas G C, Domonkos M T, Patterson M J, et al. Performance Evaluation of the Next Ion Engine[R]. AIAA 2003-5278.
[23] Patterson M J, Haag T W, Foster J E, et al. Development Status of High-Thrust Density Electrostatic Engines[R]. AIAA 2014-3422.
[24] 贾艳辉, 张天平, 郑茂繁, 等. 离子推力器栅极系统电子反流阈值的数值分析[J]. 推进技术, 2012, 33(6): 991-996.