BIAN Jing1, ZHOU Lin1,2, TENG Hong-hui1. Numerical Study on Effects of Two Forebody Compression Methods on Oblique Detonation Combustion[J]. Journal of Propulsion Technology, 2021, 42(4): 815-825.
[1] 向先宏, 钱战森. 吸气式高超声速飞行器机体/推进一体化设计技术研究进展及分类对比分析[J]. 推进技术, 2018, 39(10): 2207-2218.
[2] McClinton C R, Rausch V L, Nguyen L T, et al. Preliminary X-43 Flight Test Results[J]. Acta Astronautica, 2005, 57(2-8): 266-276.
[3] 陈嘉豪, 张义宁, 杨 晖, 等. 斜爆震发动机进气道与燃烧室一体化设计仿真研究[J]. 推进技术, 2018, 39(9): 1938-1947.
[4] Wolański P. Detonative Propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1): 125-158.
[5] Li C, Kailasanath K, Oran E S. Detonation Structures Behind Oblique Shocks[J]. Physics of Fluids, 1994, 6 (4): 1600-1611.
[6] Desbordes D, Hamada L, Guerraud C. Supersonic H2-Air Combustions Behind Oblique Shock Waves[J]. Shock Waves, 1995, 4(6): 339-345.
[7] Teng H H, Jiang Z L. On the Transition Pattern of the Oblique Detonation Structure[J]. Journal of Fluid Mechanics, 2012, 713: 659-669.
[8] 陈 楠, Seyed Amin Esfehani, Bhattrai Sudip, 等. 当量比对斜爆轰波诱导区特性影响的数值模拟研究[J]. 推进技术, 2018, 39(12): 2798-2805.
[9] Iwata K, Nakaya S, Tsue M. Wedge-Stabilized Oblique Detonation in an Inhomogeneous Hydrogen-Air Mixture[J]. Proceedings of the Combustion Institute, 2017, 36: 2761-2769.
[10] Fang Y, Hu Z, Teng H, et al. Numerical Study of Inflow Equivalence Ratio Inhomogeneity on Oblique Detonation Formation in Hydrogen-Air Mixtures[J]. Aerospace Science and Technology, 2017, 71: 256-263.
[11] Yang P, Ng H D, Teng H H. Numerical Study of Wedge-Induced Oblique Detonations in Unsteady Flow[J]. Journal of Fluid Mechanics, 2019, 876: 264-287.
[12] Zhang Y, Yang P, Teng H, et al. Transition Between Different Initiation Structures of Wedge-Induced Oblique Detonations[J]. AIAA Journal, 2018, 56(10): 4016-4023.
[13] Viguier C, Gourara A, Desbordes D. Three-Dimensional Structure of Stabilization of Oblique Detonation Wave in Hypersonic Flow[C]. Pittsburgh: 27th Symposium (International) on Combustion, 1998.
[14] Teng H H, Jiang Z L, Ng H D. Numerical Study on Unstable Surfaces of Oblique Detonations[J]. Journal of Fluid Mechanics, 2014, 744: 111-128.
[15] Zhang Y, Zhou L, Gong J, et al. Effects of Activation Energy on the Instability of Oblique Detonation Surfaces with a One-Step Chemistry Model[J]. Physics of Fluids, 2018, 30(10).
[16] 归明月, 范宝春. 尖劈诱导的斜爆轰波的精细结构及其影响因素[J]. 推进技术, 2012, 33(3): 490-494.
[17] Sislian J P, Dudebout R, Schumacher J, et al. Incomplete Mixing and Off-Design Effects on Shock-Induced Combustion Ramjet Performance[J]. Journal of Propulsion and Power, 2000, 16(1): 41-48.
[18] Miao S, Zhou J, Lin Z, et al. Numerical Study on Thermodynamic Efficiency and Stability of Oblique Detonation Waves[J]. AIAA Journal, 2018, 56 (8): 3112-3122.
[19] Dudebout R, Sislian J P, Oppitz R. Numerical Simulation of Hypersonic Shock-Induced Combustion Ramjets[J]. Journal of Propulsion and Power, 1998, 14 (6): 869-879.
[20] Anderson John. Fundamentals of Aerodynamics[M]. New York: McGraw-Hill Education, 2017.
[21] 童秉纲, 孔祥言, 邓国华. 气体动力学[M]. 北京: 高等教育出版社, 2012.
[22] Li C, Kailasanath K, Oran E S. Effects of Boundary Layers on Oblique Detonation Structures[C]. Reno: 31st Aerospace Sciences Meeting, 1993.
[23] Burke M P, Chaos M, Ju Y, et al. Comprehensive H2/O2 Kinetic Model for High-Pressure Combustion[J]. International Journal of Chemical Kinetics, 2012, 44(7).
[24] McBride J M, Zehe J Z, Gordon S. NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species[R]. NASA TP-2002-211556.
[25] Wang T, Zhang Y, Teng H, et al. Numerical Study of Oblique Detonation Wave Initiation in a Stoichiometric Hydrogen-Air Mixture[J]. Physics of Fluids, 2015, 27(9).
[26] Teng H, Ng H D, Jiang Z. Initiation Characteristics of Wedge-Induced Oblique Detonation Waves in a Stoichiometric Hydrogen-Air Mixture[J]. Proceedings of the Combustion Institute, 2017, 36 (2): 2735-2742.
[27] 刘明磊. 超燃冲压发动机热力循环分析与建模技术研究[D]. 南京: 南京航空航天大学, 2018.
[28] Zhang Y, Fang Y, Ng H D, et al. Numerical Investigation on the Initiation of Oblique Detonation Waves in Stoichiometric Acetylene-Oxygen Mixtures with High Argon Dilution[J]. Combustion and Flame, 2019, 204: 391-396.
[29] Zhao Y H, Liang J, Zhao Y X, et al. Research on Mixing Characteristics and Total Pressure Loss of the Jet in Supersonic Crossflow[C]. San Jose: 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2013.