Flow Characteristics of an Integrated Ejector Nozzle with Tertiary Intake
1.Jiangsu Province Key Laboratory of Aerospace Power System,College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;2.Beijing Power Machinery Institute,Beijing 100074,China
HUANG He-xia1, ZHANG Ke-xin1, TAN Hui-jun1, LU Shi-jie1, ZHAO Lei2, LEI Ming2, LING Wen-hui2. Flow Characteristics of an Integrated Ejector Nozzle with Tertiary Intake[J]. Journal of Propulsion Technology, 2020, 41(12): 2729-2738.
[1] 刘大响, 金 捷. 21世纪世界航空动力技术发展趋势与展望[J]. 中国工程科学, 2004, (9): 5-12.
[2] Kelly M, Menich R, Olds J. What's Cheaper to Fly: Rocket or TBCC? Why?[R]. AIAA 2010-2326.
[3] Cockrell C, Auslender A, Guy R, et al. Technology Roadmap for Dual-Mode Scramjet Propulsion to Support Space-Access Vision Vehicle Development[R]. AIAA 2002-5188.
[4] Kojima T, Kobayashi H, Taguchi H. Design and Fabrication of Variable Nozzle for Precooled Turbojet Engine[R]. AIAA 2009-7312.
[5] Délery J, Hardy J M. Present Possibilities for a Theoretical Study of a Supersonic Ejector Nozzle[R]. NASA-TT-F-9870.
[6] Merlin P W. Design and Development of the Blackbird: Challenges and Lessons Learned[R]. AIAA 2009-1522.
[7] Viets H. Thrust Augmenting Ejector Analogy[J]. Journal of Aircraft, 1977, 14(4): 409-411.
[8] Presz W M, Reynolds G, McCormick D. Thrust Augmentation Using Mixer-Ejector-Diffuser Systems[R]. AIAA 94-0020.
[9] DeBonis J R. Full Navier-Stokes Analysis of a Two-Dimensional Mixer/Ejector Nozzle for Noise Suppression[R]. AIAA 92-3570.
[10] Addy A L, Chow W L. Interaction Between Primary and Secondary Streams of Supersonic Ejector Systems and Their Performance Characteristics[J]. AIAA Journal, 1964, 2(4): 686-695.
[11] Der J. Improved Methods of Characterizing Ejector Pumping Performance[J]. Journal of Propulsion and Power, 1991, 7(3): 412-419.
[12] Kumar R A, Rajesh G. Physics of Vacuum Generation in Zero-Secondary Flow Ejectors[J]. Physics of Fluids, 2018, 30(6).
[13] Karthick S K, Rao S M V, Jagadeesh G, et al. Parametric Experimental Studies on Mixing Characteristics Within a Low Area Ratio Rectangular Supersonic Gaseous Ejector[J]. Physics of Fluids, 2016, 28(7).
[14] Anderson B. Factors Which Influence the Analysis and Design of Ejector Nozzles[R]. AIAA 72-46.
[15] Stitt L E. Exhaust Nozzles for Propulsion Systems with Emphasis on Supersonic Cruise Aircraft[R]. NASA-RP-1235.
[16] 吴 达, 陈 芬. 引射增力器的性能分析和实验研究[J]. 推进技术, 1988, 9(2): 14-21.
[17] 吴 达, 杨载明, 张 荣. 超音速引射喷管的分析和实验研究[J]. 工程热物理学报, 1980, (3): 246-254.
[18] 伊赫桑·巴伦. 纯物质热化学数据手册[M]. 北京: 科学出版社, 2003.
[19] Anderson B H. Assessment of an Analytical Procedure for Predicting Supersonic Ejector Nozzle Performance[R]. NASA-TN-D-7601, 1974.
[20] Steve P. Lockheed SR-71 Blackbird[M]. UK: The Crowood Press, 2004.
[21] 周唯阳. 串联布局TBCC可调喷管的设计、仿真与实验研究[D]. 南京: 南京航空航天大学, 2012.