Journal of Propulsion Technology ›› 2021, Vol. 42 ›› Issue (1): 82-93.DOI: 10.13675/j.cnki.tjjs.200213
• Aero-thermodynamics • Previous Articles Next Articles
Online:
2021-01-15
Published:
2021-01-15
王嘉辉1,2,张华良1,2,尹钊1,李文1,2,3,陈海生1,2,3,汤洪涛3
作者简介:
王嘉辉,硕士生,研究领域为涡轮气动热力学。E-mail:wangjiahui@iet.cn
基金资助:
WANG Jia-hui1,2, ZHANG Hua-liang1,2, YIN Zhao1, LI Wen1,2,3, CHEN Hai-sheng1,2,3, TANG Hong-tao3. Review of Axial Turbine Loss Model[J]. Journal of Propulsion Technology, 2021, 42(1): 82-93.
王嘉辉,张华良,尹钊,李文,陈海生,汤洪涛. 轴流涡轮损失模型研究进展[J]. 推进技术, 2021, 42(1): 82-93.
Add to citation manager EndNote|Ris|BibTeX
[1] Javaniyan J H, Eftari M, Shahhoseini M R, et al. A Method of Performance Estimation for Axial Flow Turbines Based on Losses Prediction[J]. Journal of Mechanical Research and Application, 2012, 4(1): 35-43. [2] Ning Wei. Significance of Loss Models in Aerothermodynamic Simulation for Axial Turbines[D]. Stockholm: Royal Institute of Technology, 2000. [3] 华 鑫, 乔渭阳, 卢 蕊, 等. 基于流线曲率法的航空轴流涡轮损失模型研究[J]. 机械设计与制造, 2005, (12): 12-14. [4] 靳 杰, 温风波, 韩万金, 等. 不同损失模型对气冷涡轮S2流面优化影响的分析[J]. 热能动力工程, 2009, 24(1): 12-18. [5] Bertini F, Ampellio E, Marconcini M, et al. A Critical Numerical Review of Loss Correlation Models and Smith Diagram for Modern Low Pressure Turbine Stages[R]. ASME GT 2013-94849. [6] Hall S R. Investigation of the Effects of Compressibility on Profile Pressure Losses in Axial Turbine Cascades[D]. Ottawa: Carleton University, 2012. [7] 邵梓一, 李 文, 张雪辉, 等. 透平内部非稳态流动试验研究进展[J]. 推进技术, 2019, 40(10): 2161-2174. [8] Pinto R N, Afzal A, D’Souza L V, et al. Computational Fluid Dynamics in Turbomachinery: A Review of State of the Art[J]. Archives of Computational Methods in Engineering, 2017, 24(3): 467-479. [9] 杨卓君. 燃气涡轮气膜冷却的优化设计与气热性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2019. [10] Zhang J, Zhang S, Wang C, et al. Recent Advances in Film Cooling Enhancement: A Review[J]. Chinese Journal of Aeronautics, 2020, 33(4): 1119-1136. [11] Puente R, Paniagua G, Verstraete T. Design Trade-Off Study Between Efficiency and Rotor Forcing Attenuation in a Transonic Turbine Stage[J]. Applied Mathematical Modelling, 2015, 39(2): 838-850. [12] 朱俊强, 屈 骁, 张燕峰, 等. 高负荷低压涡轮内部非定常流动机理及其控制策略研究进展[J]. 推进技术, 2017, 38(10): 2186-2199. [13] Jain N, Bravo L, Kim D, et al. Massively Parallel Large Eddy Simulation of Rotating Turbomachinery for Variable Speed Gas Turbine Engine Operation[J]. Energies, 2020, 13(3): 703. [14] Lanzillotta F, Sciacchitano A, Rao A G. Effect of Film Cooling on the Aerodynamic Performance of an Airfoil[J]. International Journal of Heat and Fluid Flow, 2017, 66: 108-120. [15] Dahlquist A N. Investigation of Losses Prediction Methods in 1D for Axial Gas Turbines[D]. Lund: Lund University, 2008. [16] Ennil A B, Al-Dadah R, Mahmoud S, et al. Minimization of Loss in Small Scale Axial Air Turbine Using CFD Modeling and Evolutionary Algorithm Optimization[J]. Applied Thermal Engineering, 2016, 102: 841-848. [17] 林晓春. 透平叶片气膜冷却及冷气掺混损失研究[D]. 北京: 中国科学院工程热物理研究所, 2018. [18] Zlatinov M B, Sooi Tan C, Montgomery M, et al. Turbine Hub and Shroud Sealing Flow Loss Mechanisms[J]. Journal of Turbomachinery, 2012, 134(6). [19] Bo?i? I, Beni?ek M. An Improved Formula for Determination of Secondary Energy Losses in the Runner of Kaplan Turbine[J]. Renewable Energy, 2016, 94: 537-546. [20] Curtis E M, Hodson H P, Banieghbal M R, et al. Development of Blade Profiles for Low-Pressure Turbine Applications[J]. Journal of Turbomachinery, 1997, 119(3): 531-538. [21] 魏佐君. 高负荷涡轮端区非定常流动机理及损失控制研究[D]. 西安: 西北工业大学, 2016. [22] Booth T C. Importance of Tip Clearance Flows in Turbine Design[R]. Von Karman Institute, VKI LS 1985-05, 1985. [23] 丁小娟, 钟兢军, 陆华伟. 涡轮平面叶栅设计工况下旋涡结构分析[J]. 节能技术, 2017, 35(5): 396-401. [24] 易小兰, 张华良, 苏 赫, 等. 超高负荷涡轮叶栅内的旋涡结构分析[J]. 工程热物理学报, 2014, 35(7): 1290-1294. [25] Gao J, Zheng Q, Liu Y, et al. Effects of Blade Rotation on Axial Turbine Tip Leakage Vortex Breakdown and Loss[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(9): 1634-1649. [26] Walters D K, Leylek J H. Impact of Film-Cooling Jets on Turbine Aerodynamic Losses[J]. Journal of Turbomachinery, 2000, 122(3): 537-545. [27] 高 扬. 透平气膜冷却与冷气掺混损失研究[D]. 北京: 中国科学院工程热物理研究所, 2015. [28] 王远庆. 低稠度叶尖涡轮的气动设计与试验研究[D]. 南京: 南京航空航天大学, 2018. [29] Coull J D. Endwall Loss in Turbine Cascades[J]. Journal of Turbomachinery, 2017, 139(8). [30] Gao J, Zheng Q, Xu T, et al. Inlet Conditions Effect on Tip Leakage Vortex Breakdown in Unshrouded Axial Turbines[J]. Energy, 2015, 91: 255-263. [31] Ainley D G, Mathieson G C. A Method of Performance Estimation for Axial-Flow Turbines[R]. Aeronautical Research Council London(United Kingdom), ARC-R/M-2974, 1951. [32] Soderberg C R. Gas Turbine Laboratory. Massaehusetts Institute of Technology[R]. Unpublished Notes, 1949. [33] Carter A F, Lenherr F K. Correlations of Turbine Blade Total-Pressure-Loss Coefficients Derived from Achievable Stage Efficiency Data[R]. ASME 68-WA/GT-5, 1968. [34] Dunham J, Came P M. Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction[J]. Journal of Engineering for Power, 1970, 92(3): 252-256. [35] Kacker S C, Okapuu U. A Mean Line Prediction Method for Axial Flow Turbine Efficiency[J]. Journal of Engineering for Power, 1982, 104: 111-119. [36] Craig H R M, Cox H J A. Performance Estimation of Axial Flow Turbines[J]. Proceedings of the Institution of Mechanical Engineers, 1970, 185(1): 407-424. [37] Chen S. A Loss Model for the Transonic Flow Low-Pressure Steam Turbine Blades[R]. IME, C271/87, 1987: 145-153. [38] Traupel W. Thermische Turbomaschinen[M]. Berlin: Springer Verlag, 1977. [39] Stewart W L. Analysis of Two-Dimensional Compressible-Flow Loss Characteristics Downstream of Turbomachine Blade Rows in Terms of Basic Boundary-Layer Characteristics[R]. NACA TN 3515, 1955. [40] Stewart W L, Whitney W J, Wong R Y. A Study of Boundary-Layer Characteristics of Turbomachine Blade Rows and Their Relation to Over-All Blade Loss[J]. Journal of Basic Engineering, 1960, 82(3): 588-592. [41] Balje O E, Binsley R L. Axial Turbine Performance Evaluation. Part A—Loss-Geometry Relationships[J]. Journal of Engineering for Power, 1968, 90(4): 341-348. [42] Ehrich F F, Detra R W. Transport of the Boundary Layer in Secondary Flow[J]. Journal of the Aeronautical Sciences, 1954, 21(2): 136-138. [43] Scholz N. Secondary flow losses in Turbine Cascades[J]. Journal of the Aeronautical Sciences, 1954, 21(10): 707-708. [44] Hawthorne W R. Some Formulae for the Calculation of Secondary Flow in Cascades[R]. Aeronautical Research Council, 1955. [45] Boulter R A. The Effect of Aspect Ratio on the Secondary Losses in a Cascade of Impulse Turbine Blades[R]. Unpublished Pamertrada Report, 1962. [46] Sharma O P, Butler T L. Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades[J]. Journal of Turbomachinery, 1987, 109(2): 229-236. [47] Okan M B, Gregory-Smith D G. A Simple Method for Estimating Secondary Losses in Turbines at the Preliminary Design Stage[R]. ASME 92-GT-294. [48] Lakshminarayana B. Methods of Predicting the Tip Clearance Effects in Axial Flow Turbomachinery[J]. Journal of Basic Engineering, 1970, 92(3): 467-482. [49] Yaras M I, Sjolander S A. Prediction of Tip-Leakage Losses in Axial Turbines[J]. Journal of Turbomachinery, 1992, 114(1): 204-210. [50] Kim B N. A Numerical Study on Flow and Heat Transfer and Development of Tip-Leakage Loss and Broadband Noise Model for Axial Flow Turbomachinery Tip Gaps[D]. Daejeon: Korea Advanced Institute of Science and Technology, 1996. [51] Kim B N, Chung M K. Improvement of Tip Leakage Loss Model for Axial Turbines[J]. Journal of Turbomachinery, 1997, 119(2): 399-401. [52] 张宗辰, 杜睆实, 付海涛, 等. 非设计攻角对涡轮叶片叶型损失的影响特点分析[J]. 重庆理工大学学报(自然科学), 2017, 31(11): 109-116. [53] Jouini D B M, Sjolander S A, Moustapha S H. Midspan Flow-Field Measurements for Two Transonic Linear Turbine Cascades at Off-Design Conditions[J]. Journal of Turbomachinery, 2002, 124(2): 176-186. [54] 翁史烈. 燃气轮机性能分析[M]. 上海:上海交大出版社, 1987. [55] 万 欣. 燃气叶轮机械[M]. 北京:机械工业出版社, 1987. [56] Zehner P. Calculation of Four-Quadrant Characteristics of Turbines[R]. ASME 80-GT-2. [57] Moustapha S H, Kacker S C, Tremblay B. An Improved Incidence Losses Prediction Method for Turbine Airfoils[R]. ASME 89-GT-284. [58] Benner M W, Sjolander S A, Moustapha S H. Influence of Leading-Edge Geometry on Profile Losses in Turbines at Off-Design Incidence: Experimental Results and an Improved Correlation[J]. Journal of Turbomachinery, 1997, 119(2): 193. [59] 黄庆南, 刘泽秋, 朱铭福, 等. 航空发动机设计手册: 涡轮(第10册)[M]. 北京: 航空工业出版社, 2001. [60] 刘 超. 航空涡轮损失预估方法研究[D]. 南京: 南京航空航天大学, 2013. [61] Hong Y S, Groh F G. Axial Turbine Loss Analysis and Efficiency Prediction Method[R]. Boeing Co Seattle Wa Turbine Div D4-3220, 1966. [62] Behera A K, Choudhary T, Kumar P. A Review on Turbine Design and Optimization―A State of Art II[J]. Certified Journal, 2014, 4(2): 881-884. [63] 孙大伟. 高压涡轮二次流机理、损失模型及控制技术研究[D]. 西安: 西北工业大学, 2009. [64] Denton J D. The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines[J]. Journal of Turbomachinery, 1993, 115(4): 621-656. [65] Benner M W, Sjolander S A, Moustapha S H. An Empirical Prediction Method for Secondary Losses in Turbines, Part II: a New Secondary Loss Correlation[J]. Journal of Turbomachinery, 2006, 128(2): 281-291. [66] Benner M W, Sjolander S A, Moustapha S H. An Empirical Prediction Method for Secondary Losses in Turbines, Part I: a New Loss Breakdown Scheme and Penetration Depth Correlation[J]. Journal of Turbomachinery, 2006, 128(2): 273-280. [67] Coull J D, Hodson H P. Predicting the Profile Loss of High-Lift Low Pressure Turbines[J]. Journal of Turbomachinery, 2012, 134(2). [68] Baturin O V, Popov G M, Kolmakova D A, et al. The Best Model for the Calculation of Profile Losses in the Axial Turbine[J]. Journal of Physics: Conference Series, 2017, 803(1). [69] Baturin O, Kolmakova D. Development of A New Equations Describing Profile Losses in Axial Turbine Blade Row[C]. Samara: IOP Conference Series: Materials Science and Engineering, 2018. [70] Zhu J, Sjolander S A. Improved Profile Loss and Deviation Correlations for Axial-Turbine Blade Rows[R]. ASME GT 2005-69077. [71] Tournier J M, El-Genk M S. Axial Flow, Multi-Stage Turbine and Compressor Models[J]. Energy Conversion and Management, 2010, 51(1): 16-29. [72] Javaniyan J H, Eftari M, Shahhoseini M R, et al. A Method of Performance Estimation for Axial Flow Turbines Based on Losses Prediction[J]. Journal of Mechanical Research and Application, 2012, 4(1): 35-42. [73] Beschorner A, Vogeler K, Goldhahn E, et al. Experimental and Numerical Investigations to Extend the Validity Range of a Turbine Loss Correlation for Ultra-Low Aspect Ratios in Transonic Flow[R]. ETC10, ETC2013-085, 2013. [74] Yuan Z W, Zhang J, Zhu D S. Profile Loss Correlations for Variable Incidences[J]. Applied Mechanics and Materials, 2014, 577: 527-530. [75] 倪林森, 陈 榴, 戴 韧. 多级轴流透平流动损失结构与损失模型的修正[J]. 工程热物理学报, 2016(12): 78-84. [76] 侯伟涛, 潘贤德, 张 洪, 等. 高压涡轮气冷叶片冷却掺混损失数值研究[J]. 推进技术, 2018, 39(2): 342-350. [77] Hartsel J. Prediction of Effects of Mass-Transfer Cooling on the Blade-Row Efficiency of Turbine Airfoils[C]. San Diego: 10th Aerospace Sciences Meeting, 1972. [78] Walters D K, Leylek J H. Impact of Film-Cooling Jets on Turbine Aerodynamic Losses[J]. Journal of Turbomachinery, 2000, 122(3): 537-545. [79] Ito S, Eckert E R G, Goldstein R J. Aero-dynamic Loss in a Gas Turbine Stage with Film Cooling[J]. Journal of Engineering for Power Transactions, 1980, 102(4): 964-970. [80] 许开富, 乔渭阳, 伊进宝, 等. 航空燃气涡轮冷气掺混流动损失的数值研究[J]. 航空学报, 2006, 27(2): 182-186. [81] 曲 龙. 涡轮损失模型的研究及CFD验证[D]. 哈尔滨: 哈尔滨工程大学, 2013. [82] Koellen O, Koschel W. Effect of Film Cooling on the Aerodynamic Performance of a Turbine Cascade[R]. HTCG, N86-29823 21-07, 1985. [83] Lakshminarayana B. Fluid Dynamics and Heat Transfer of Turbomachinery[M]. New Jersey: John Wiley & Sons, 1995. [84] 杨 弘. 气冷涡轮叶栅效率的计算方法[J]. 航空动力学报, 1995, 10(1): 41-44. [85] Bohn D, Kim T S. Aerodynamic Loss Prediction of Axial Flow Turbine Blade Rows with Coolant Injection[J]. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power & Energy, 1999, 213(2): 93-101. [86] 黄忠湖, 王月奇, 杨锦甫. 有冷气掺混的涡轮气动设计计算方法[J]. 航空动力学报, 1989, 4(4): 6-9. [87] Shapiro A H. The Dynamics and Thermo-Dynamics of Compressible Fluid Flow[M]. New Jersey: John Wiley & Sons, 1953. [88] Young J B, Wilcock R C. Modeling the Air-Cooled Gas Turbine, Part 2: Coolant Flows and Losses[J]. Journal of Turbomachinery, 2002, 124(2): 214-221. [89] Lim C H, Pullan G, Northall J. Estimating the Loss Associated with Film Cooling for a Turbine Stage[J]. Journal of Turbomachinery, 2012, 134(2). [90] Cha C M. The Dissipation Function-Based Efficiency for Turbomachinery: Part 1—The Efficiency of a Cooled Turbine Row[R]. ASME GT 2014-26656. [91] Cha C M. The Dissipation Function-Based Efficiency for Turbomachinery, Part 2: The Power of a Cooled Turbine[R]. ASME GT 2015-42660. [92] Cha C M, Kramlich J C. Modeling Finite-Rate Mixing Effects in Reburning Using a Simple Mixing Model[J]. Combustion and Flame, 2000, 122(1-2): 151-164. [93] Mcvetta A, Giel P, Welch G. Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade[C]. Atlanta: AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2013. [94] Flegel A B. Aerodynamic Measurements of a Variable-Speed Power-Turbine Blade Section in a Transonic Turbine Cascade[R]. ASME GT 2013-94695. [95] Flegel A B, Giel P W, Welch G E. Aerodynamic Effects of Turbulence Intensity on a Variable-Speed Power-Turbine Blade with Large Incidence and Reynolds Number Variations[C]. Cleveland: AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2013. [96] Teia L. New Insight into Aspect Ratio's Effect on Secondary Losses of Turbine Blades[J]. Journal of Turbomachinery, 2019, 141(11). [97] Torre D, Garcia-Valdecasas G, Cadrecha D. The Effect of Turning Angle on the Loss Generation of LP Turbines[R]. ASME GT 2017-64582. [98] 梁 晨, 牛夕莹, 林 枫, 等. 动力涡轮整体三维流场分析和验证[J]. 舰船科学技术, 2010, 32(8): 92-97. [99] Corriveau D, Sjolander S A. Aerodynamic Performance of a Family of Three High Pressure Transonic Turbine Blades at Off-Design Incidence[R]. ASME GT 2005-68159. [100] Melzer A P, Pullan G. The Role of Vortex Shedding in the Trailing Edge Loss of Transonic Turbine Blades[J]. Journal of Turbomachinery, 2019, 141(4). [101] Cui J, Rao V N, Tucker P G. Numerical Investigation of Secondary Flows in a High-Lift Low Pressure Turbine[J]. International Journal of Heat and Fluid Flow, 2017, 63: 149-157. [102] 陈志涯, 詹杰民, 龚也君, 等. 气膜孔的位置对涡结构和气膜冷却效率的影响[J]. 汽轮机技术, 2019, 61(1): 29-32. [103] Gr?f L, Kleiser L. Film Cooling Using Antikidney Vortex Pairs: Effect of Blowing Conditions and Yaw Angle on Cooling and Losses[J]. Journal of Turbomachinery, 2014, 136(1). [104] Simoni D, Berrino M, Ubaldi M, et al. Off-Design Performance of a Highly Loaded Low-Pressure Turbine Cascade under Steady and Unsteady Incoming Flow Conditions[J]. Journal of Turbomachinery, 2015, 137(7). [105] 屈 骁, 张燕峰, 卢新根, 等. 上游尾迹对高负荷低压涡轮非定常气动性能的影响[J]. 工程热物理学报, 2019, 40(9): 2004-2011. [106] Davide L, Simoni D, Ubaldi M, et al. Coherent Structures Formation During Wake-Boundary Layer Interaction on a LP Turbine Blade[J]. Flow, Turbulence and Combustion, 2017, 98(1): 57-81. [107] Zhao B, Qi M, Sun H, et al. Experimental and Numerical Investigation on the Shock Wave Structure Alterations and Available Energy Loss Variations with a Grooved Nozzle Vane[J]. Journal of Turbomachinery, 2019, 141(5). [108] Shi Liu-liu, Yao Shi-chuan, Xuan Li-ming, et al. Experimental and Numerical Investigation of the Wake Structure and Aerodynamic Loss of Trailing Edge Jet[J]. Journal of Mechanical Science and Technology, 2018, 32(5): 2039-2046. [109] 邹正平, 叶 建, 刘火星, 等. 低压涡轮内部流动及其气动设计研究进展[J]. 力学进展, 2007, (4): 551-562. [110] Bons J P, Pluim J, Gompertz K, et al. The Application of Flow Control to an Aft-Loaded Low Pressure Turbine Cascade with Unsteady Wakes[J]. Journal of Turbomachinery, 2012, 134(3). |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
General Visit:
Visit Today:
Currently Online: