Oscillation Mechanism and Frequency Characteristics of Combustion Induced by Spheres with Different Diameters
1.School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China;2.Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China
LIU Shuai1, ZHANG Zi-jian2, TENG Hong-hui1. Oscillation Mechanism and Frequency Characteristics of Combustion Induced by Spheres with Different Diameters[J]. Journal of Propulsion Technology, 2021, 42(4): 745-754.
[1] 姜宗林. 爆轰推进概念与机理研究——新型发动机研究的热点[J]. 世界科技研究与发展, 2001, 23(4).
[2] Voland R T, Huebner L D, McClinton C R. X-43A Hypersonic Vehicle Technology Development[J]. Acta Astronautica, 2006, 59(1-5): 181-191.
[3] Choi J, Shin E J R, Jeung I. Unstable Combustion Induced by Oblique Shock Waves at the Non-Attaching Condition of the Oblique Detonation Wave[J]. Proceedings of the Combustion Institute, 2009, 32(2).
[4] kazuyoshi Takayama, Akihiro Sasoh. Ram Accelerators[C]. Sendai: Proceedings of the Third International Workshop on Ram Accelerators, 1997.
[5] Lee J H S. The Detonation Phenomenon[M]. Cambridge: Cambridge University Press, 2008.
[6] Ruegg F W, Dorsey W W. A Missile Technique for the Study of Detonation Waves[J]. Journal of Research of the National Bureau of Standards, Section C: Engineering and Instrumentation, 1962.
[7] Behrens H, Struth W, Wecken F. Studies of Hypervelocity Firings into Mixtures of Hydrogen with Air or with Oxygen[J]. Symposium (International) on Combustion, 1965, 10(1): 245-252.
[8] Lehr H F. Experiments on Shock-Induced Combustion[J]. Astronautica Acta, 1972, 17: 589-597.
[9] McVey J B. Mechanisms of Instabilities of Exothermic Hypersonic Blunt-Body Flows[D]. Massachusetts: Massachusetts Institute of Technology, 1968.
[10] McVey J B, Toong T Y. Mechanism of Instabilities of Exothermic Hypersonic Blunt-Body Flows[J]. Combustion Science and Technology, 1971, 3(2): 63-76.
[11] Matsuo A, Fujiwara T. Numerical Simulation of Shock-Induced Combustion Around an Axisymmetric Blunt Body[C]. Hawaii: 26th Thermophysics Conference, 1991.
[12] Matsuo A, Fujiwara T. Numerical Investigation of Oscillatory Instability in Shock-Induced Combustion around a Blunt Body[J]. AIAA Journal, 1993, 31(10).
[13] Matsuo A, Fujii K, Fujiwara T. Computational Study of Unsteady Combustion around Projectiles with Emphasis on the Large-Disturbance Oscillation[C]. Reno: 32nd Aerospace Sciences Meeting and Exhibit, 1994.
[14] Sussman M. A Computational Study of Unsteady Shock-Induced Combustion of Hydrogen-Air Mixtures[C]. Indianapolis: 30th Joint Propulsion Conference and Exhibit, 1994.
[15] Ahuja J, Tiwari S, Kumar A. Numerical Investigation of Shock-Induced Combustion Past Blunt Projectiles in Regular and Large-Disturbance Regimes[C]. Reno: 33rd Aerospace Sciences Meeting and Exhibit, 1995.
[16] Ahuja J, Tiwari S. Effects of Various Flow and Physical Parameters on Stability of Shock-Induced-Combustion[C]. Reno: 34th Aerospace Sciences Meeting and Exhibit, 1996.
[17] Matsuo A, Fujii K. First Damkoehler Parameter for Prediction and Classification of Unsteady Combustions Around Hypersonic Projectiles[C]. Lake Buena Vista: 32nd Joint Propulsion Conference and Exhibit, 1996.
[18] Kasahara J, Horii T, Endo T, et al. Experimental Observation of Unsteady H2-O2 Combustion Phenomena Around Hypersonic Projectiles Using a Multiframe Camera[C]. Pittsburgh: Symposium (International) on Combustion, 1996.
[19] Matsuo A. Numerical Prediction of Envelope Oscillation Phenomena of Shock-Induced Combustion[M]. Berlin Heidelberg: Springer, 1998.
[20] Matsuo A, Fujii K. Prediction Method of Unsteady Combustion Around Hypersonic Projectile in Stoichiometric Hydrogen-Air[J]. AIAA Journal, 1998, 36(10).
[21] Matsuo A. Instability of Projectile-Induced Combustion[C]. Reno: 40th AIAA Aerospace Sciences Meeting & Exhibit, 2002.
[22] McBride B J, Gordon S, Reno M A. Coefficients for Calculating Thermodynamic and Transport Properties of Individual Species[R]. NASA TM-4513, 1993.
[23] Peroomian O, Chakravarthy S, Goldberg U, et al. A 'grid-Transparent' Methodology for CFD[C]. Reno: 35th Aerospace Sciences Meeting and Exhibit, 1997.
[24] Toro E F, Spruce M, Speares W. Restoration of the Contact Surface in the HLL-Riemann Solver[J]. Shock Waves, 1994, 4(1): 25-34.
[25] Wilson G J, MacCormack R W. Modeling Supersonic Combustion Using a Fully Implicit Numerical Method[J]. AIAA Journal, 1992, 30(4): 1008-1015.
[26] Jachimowski C J. An Analytical Study of the Hydrogen-Air Reaction Mechanism with Application of Scramjet Combustion[R]. NASA TP-2791, 1988.
[27] 吴 坤. 超声速燃烧室火焰稳定模式与化学反应机理简化研究[D]. 北京: 中国科学院大学, 2018.
[28] Fureby C, Chapuis M, Fedina E, et al. CFD Analysis of the Hyshot Ⅱ Scramjet Combustor[J]. Proceedings of the Combustion Institute, 2011, 33(2).
[29] Chapuis M, Fedina E, Fureby C, et al. A Computational Study of the Hyshot II Combustor Performance[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2101-2109.
[30] Choi J Y, Jeung I S, Yoon Y. Computational Fluid Dynamics Algorithms for Unsteady Shock-Induced Combustion, Part 1: Validation[J]. AIAA Journal, 2000, 38(7): 1179-1187.