Performance Analysis of a Small Pulse Detonation Turboshaft Engine with a Booster
1.AEEC Hunan Aviation Powerplant Research Institute,Zhuzhou 412002,China;2.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China
ZHENG Hua-lei1, HUANG Xing1, GUO Qing-lin1, ZHENG Long-xi2. Performance Analysis of a Small Pulse Detonation Turboshaft Engine with a Booster[J]. Journal of Propulsion Technology, 2021, 42(4): 923-930.
[1] 严传俊, 范 玮, 黄希桥. 脉冲爆震发动机原理及关键技术[M]. 西安: 西北工业大学出版社, 2005.
[2] Wilson J, Paxson D E. On the Exit Boundary Condition for One-Dimensional Calculations of Pulsed Detonation Engine Performance[R]. NASA TM-2002-211299.
[3] Paxson D E. Performance Evaluation Method for Ideal Air Breathing Pulse Detonation Engines[J]. Journal of Propulsion and Power, 2004, 20(5): 945-950.
[4] Endo T, Fujiwara T. A Simplified Analysis on a Pulse Detonation Engine Model[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2002, 44(146): 217-222.
[5] Endo T, Fujiwara T. Analytical Estimation of Performance Parameters of an Ideal Pulse Detonation Engine[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2003, 45(150): 249-254.
[6] Endo T, Kasahara J, Matsuo A, et al. Pressure History at the Thrust Wall of a Simplified Pulse Detonation Engine[J]. AIAA Journal, 2004, 42(9): 1921-1930.
[7] 邓君香, 严传俊, 郑龙席, 等. 装有脉冲爆震主燃烧室的燃气涡轮发动机性能计算[J]. 西北工业大学学报, 2008, 26( 3): 362-367.
[8] 何 龙, 郑龙席, 邱 华, 等. 脉冲爆震涡轮发动机性能计算[J]. 推进技术, 2012, 33(5): 665-670.
[9] 陈文娟, 范 玮, 邱 华, 等. 外涵装有脉冲爆震加力燃烧室的涡扇发动机热力性能分析[J]. 西北工业大学学报, 2010, 28(2): 240-244.
[10] 卢 杰, 郑龙席, 王治武, 等. 采用脉冲爆震外涵加力燃烧室的涡扇发动机性能研究[J]. 推进技术, 2014, 35(6): 858-864.
[11] Lemmon E W, Huber M L, McLinden M O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP(Version 9.0)[M]. Gaithersburg: National Institute of Standards and Technology, 2010.
[12] Span R, Wagner W. A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100K at Pressures up to 800MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596.
[13] McBride B, Gordon S. Computer Program for Calculating and Fitting Thermodynamic Functions[R]. NASA RP-1271-1998.
[14] Almodovar T, Exley H, Kaehler W, et al. Engine Component Technology(sect) Study Final Report[R]. NASA CR-175081, 1986.
[15] Gerard E Welch, Hathaway Michael D, Skoch Gary J. Rotary-Wing Relevant Compressor Aero Research and Technology Development Activities at Glenn Research Center[R]. NASA/TM-2012-217280.
[16] Schneide Steven J. Analysis of Turbine Blade Relative Cooling Flow Factor Used in the Subroutine Coolit Based on Film Cooling Correlations[R]. NASA/TM-2015-218738.
[17] Gauntner James W. Algorithm for Calculating Turbine Cooling Flow and the Resulting Decrease in Turbine Efficiency[R]. NASA/TM-1980-81453.
[18] Boyle Robert J, Parikh Ankur H. Design Considerations for Ceramic Matrix Composite Vanes for High Pressure Turbine Applications[R]. ASME GT-2013-95104.
[19] Boyle Robert J, Parikh Ankur H. Design Concepts for Cooled Ceramic Composite Turbine Vane[R]. NASA/CR-2015-218390.
[20] Schutte Jeffrey. Simultaneous Multi-Design Point Approach to Gas Turbine On-Design Cycle Analysis for Aircraft Engines[D]. Atlanta: Georgia Institute of Technology, 2009.
[21] Schutte Jeffrey, Jimmy Tai, Sands Jonathan, et al. Cycle Design Exploration Using Multi-Design Point Approach[R]. ASME GT-2012-69334.
[22] Schutte Jeffrey, Jimmy Tai. Multi-Design Point Cycle Design Incorporation into the Environmental Design Space[R]. AIAA 2012-3812.
[23] 郑华雷, 王召广, 蔡建兵, 等. 航空发动机多设计点热力循环分析方法的构建及应用[J]. 燃气涡轮试验与研究, 2019, 32(5): 8-14.
[24] Nelms Douglas W. Next Steps for Army AATE/ITEP Program[J]. Rotor & Wing International, 2009, 43(9): 10-11.