Effects of Combustor Width on Propagation Modes of Rotating Detonation Waves Utilizing Liquid Kerosene
1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710129,China;2.Science and Technology on Liquid Rocket Engine Laboratory,Xi’an Aerospace Propulsion Institute, Xi’an 710100,China;3.Shaanxi Key Laboratory of Thermal Sciences in Aeroengine System,Northwestern Polytechnical University, Xi’an 710129,China
WANG Zhi-cheng1, YAN Yu2, WANG Ke1,3, ZHAO Ming-hao1, ZHU Yi-yuan1, FAN Wei1. Effects of Combustor Width on Propagation Modes of Rotating Detonation Waves Utilizing Liquid Kerosene[J]. Journal of Propulsion Technology, 2021, 42(4): 842-850.
[1] Lu F K, Braun E M. Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts[J]. Journal of Propulsion and Power, 2014, 30 (5): 1125-1142.
[2] Anand V, Gutmark E. Rotating Detonation Combustors and Their Similarities to Rocket Instabilities[J]. Progress in Energy and Combustion Science, 2019, 73: 182-234.
[3] Rankin B A, Richardson D R, Caswell A W, et al. Chemiluminescence Imaging of an Optically Accessible Non-Premixed Rotating Detonation Engine[J]. Combustion and Flame, 2017, 176: 12-22.
[4] George A S, Driscoll R, Anand V, et al. On the Existence and Multiplicity of Rotating Detonations[J]. Proceedings of the Combustion Institute, 2017, 36: 2691-2698.
[5] Ishihara K, Nishimura J, Goto K, et al. Study on a Long-Time Operation Towards Rotating Detonation Rocket Engine Flight Demonstration[R]. AIAA 2017-1062.
[6] Liu S J, Liu W D, Wang Y, et al. Free Jet Test of Continuous Rotating Detonation Ramjet Engine[R]. AIAA 2017-2282.
[7] Liu S J, Lin Z Y, Liu W D, et al. Experimental Research on the Propagation Characteristics of Continuous Rotating Detonation Wave Near the Operating Boundary[J]. Combustion Science and Technology, 2015, 187: 1790-1804.
[8] Tang X M, Wang J P, Shao Y T. Three Dimensional Numerical Investigations of the Rotating Detonation Engine with a Hollow Combustor[J]. Combustion and Flame, 2015, 162(4): 997-1008.
[9] Yao S B, Tang X M, Luan M Y, et al. Numerical Study of Hollow Rotating Detonation Engine with Different Fuel Injection Area Ratios[J]. Proceedings of the Combustion Institute, 2017, 36: 2649-2655.
[10] Xie Q F, Wen H C, Li W H, et al. Analysis of Operating Diagram for H2/Air Rotating Detonation Combustors under Lean Fuel Condition[J]. Energy, 2018, 151: 408-419.
[11] Wen H C, Wang B. Experimental Study of Perforated-Wall Rotating Detonation Combustors[J]. Combustion and Flame, 2020, 213: 52-62.
[12] 马 虎, 张义宁, 杨成龙, 等. 燃料分布对旋转爆震波传播特性影响[J]. 航空动力学报, 2019, 34(3): 513-520.
[13] 郑 权, 李宝星, 翁春生, 等. 燃烧室长度对液态燃料旋转爆轰发动机性能影响实验研究[J]. 推进技术, 2018, 39(12): 2764-2771.
[14] 李宝星, 许桂阳, 翁春生, 等. 燃烧室宽度对液态燃料旋转爆轰发动机影响实验研究[J]. 推进技术, 2021, 42(2).
[15] Voitsekhovskii B V. Stationary Spin Detonation[J]. Soviet Journal of Applied Mechanics and Technical Physics, 1960, (3): 157-164.
[16] Mikhailov V V, Topchiyan M E. Studies of Continuous Detonation in an Annular Channel[J]. Fizika Goreniya i Vzryva, 1965, 2(4): 20-23.
[17] Nicholls J A, Gullen R E, Ragland K W. Feasibility Studies of a Rotating Detonation Wave Rocket Motor[J]. Journal of Spacecrafts and Rocket, 1966, 3(6): 893-898.
[18] Adamson T C, Olsson G R. Performance Analysis of a Rotating Detonation Wave Rocket Engine[J]. Astronautica Acta, 1967, 13: 405-415.
[19] 严 宇, 胡洪波, 洪 流, 等. 自燃推进剂旋转爆震燃烧实验研究[J]. 推进技术, 2018, 39(9): 1986-1993.
[20] 夏寒青, 黄 玥, 张义宁, 等. 旋转爆震发动机喷管非定常流动特性的数值模拟研究[J]. 推进技术, 2020, DOI:10.13675/j.cnki.tjjs.190721.
[21] Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous Spin Detonations[J]. Journal of Propulsion and Power, 2006, 22(6): 1204-1216.
[22] Peng L, Wang D, Wu X S, et al. Ignition Experiment with Automotive Spark on Rotating Detonation Engine[J]. International Journal of Hydrogen Energy, 2015, 40: 8465-8474.
[23] Peng H Y, Liu W D, Liu S J, et al. Experimental Investigations on Ethylene-Air Continuous Rotating Detonation Wave in the Hollow Chamber with Laval Nozzle[J]. Acta Astronautica, 2018, 151: 137-145.
[24] Wang Y H, Le J L, Wang C, et al. A Non-Premixed Rotating Detonation Engine Using Ethylene and Air[J]. Applied Thermal Engineering, 2018, 137: 749-757.
[25] Kindracki J. Experimental Research on Rotating Detonation in Liquid Fuel-Gaseous Air Mixtures[J]. Aerospace Science and Technology, 2015, 43: 445-453.
[26] 王 迪, 周 进, 林志勇. 煤油两相连续旋转爆震燃烧室工作特性试验研究[J]. 推进技术, 2017, 38(2): 471-480.
[27] Zhong Y P, Wu Y, Jin D, et al. Investigation of Rotating Detonation Fueled by the Pre-Combustion Cracked Kerosene[J]. Aerospace Science and Technology, 2019, 95(10).
[28] Lin W, Zhou J, Liu S J, et al. An Experimental Study on CH4/O2 Continuously Rotating Detonation Wave in a Hollow Combustion Chamber[J]. Experimental Thermal and Fluid Science, 2015, 62: 122-130.
[29] Peng H Y, Liu W D, Liu S J, et al. Realization of Methane-Air Continuous Rotating Detonation Wave[J]. Acta Astronautica, 2019, 164: 1-8.
[30] Kawasaki A, Inakawa T, Kasahara J, et al. Critical Condition of Inner Cylinder Radius for Sustaining Rotating Detonation Waves in Rotating Detonation Engine Thruster[J]. Proceedings of the Combustion Institute, 2019, 37(3).
[31] Zhang H L, Liu W D, Liu S J. Effects of Inner Cylinder Length on H2/Air Rotating Detonation[J]. International Journal of Hydrogen Energy, 2016, 41: 13281-13293.
[32] Kailasanath K. Liquid-Fueled Detonations in Tubes[J]. Journal of Propulsion and Power, 2006, 22(6).