Journal of Propulsion Technology ›› 2021, Vol. 42 ›› Issue (4): 851-864.DOI: 10.13675/j.cnki.tjjs.200259
• Detonation Combustion Technology • Previous Articles Next Articles
Online:
2021-04-15
Published:
2021-04-15
覃建秀,杨武兵
QIN Jian-xiu, YANG Wu-bing. Research Progress on Initiation Characteristics and Structure of Oblique Detonation Waves[J]. Journal of Propulsion Technology, 2021, 42(4): 851-864.
覃建秀,杨武兵. 斜爆震波起爆特性及其波系结构研究[J]. 推进技术, 2021, 42(4): 851-864.
Add to citation manager EndNote|Ris|BibTeX
[1] Wolanski P. Detonative Propulsion[J]. Proceeding of the Combustion Institute, 2013, 34(1): 125-158. [2] 袁生学, 黄志澄. 自持斜爆轰的特性和实验观察[J]. 宇航学报, 1995, 16(2): 90-93. [3] 袁生学, 黄志澄. 高超声速发动机不同燃烧模式的性能比较——斜爆轰发动机性能评价[J]. 空气动力学学报, 1995, 13(1): 48-56. [4] Axdahl E L. A Study of Premixed, Shock-Induced Combustion with Application to Hypervelocity Flight[D]. Atlanta: Georgia Institute of Technology, 2013. [5] Alexandrov V G, Kraiko A N, Reent K S. Determination of the Integral and Local Characteristics of Supersonic Pulsed Detonation Ramjet Engine(SPDRE)[R]. AIAA 2001-1788. [6] Huang W, Qin H, Luo S B, et al. Research Status of Key Techniques for Shock-Induced Combustion Ramjet (shcramjet) Engine[J]. Science China Technological Sciences, 2010, 53(1): 220-226. [7] Zeldovich Y B, Leipunsky O. A Study of Chemical Reactions in Shock Waves[J]. Journal of Experimental and Theoretical Physics, 1943, 18: 167-171. [8] Lehr H F. Experiment on Shock-Induced Combustion[J]. Astronautica Acta, 1972, 17(4-5): 589-597. [9] Mcvey J B, Toong T Y. Mechanism of Instabilities of Exothermic Hypersonic Blunt-Body Flows[J]. Combustion Science and Technology, 1971, 3: 63-76. [10] Matsuo A, Fujii K. Detailed Mechanism of the Unsteady Combustion Around Hypersonic Projectiles[J]. AIAA Journal, 1996, 34(10): 2082-2089. [11] Kasahara J, Horri T, Endo T, et al. Experimental Observation of Unsteady H2-O2 Combustion Phenomena Around Hypersonic Projectiles Using a Multiframe Camera[J]. Symposium on Combustion, 1996, 26(2): 2903-2908. [12] Vasiljev A A. Initiation of Gaseous Detonation by a High Speed Body[J]. Shock Waves, 1994, 3(4): 321-326. [13] Lee J H. Initiation of Detonation by a Hypervelocity Projectile[J]. Progress in Astronauties and Aeronautics, 1997, 173: 293-310. [14] Higgins A J, Bruckner A P. Experimental Investigation of Detonation Initiation by Hypervelocity Blunt Projectiles[R]. AIAA 96-0342. [15] Ju Y, Masuya G, Sasoh A. Numerical and Theoretical Studies on Detonation Initiation by a Supersonic Projectile[J]. Symposium on Combustion, 1998, 27(2): 2225-2231. [16] Verreault J, Higgins A J. Initiation of Detonation by Conical Projectiles[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2311-2318. [17] Sturtzer M O, Togami G, Seiler F. Detonation Wave Generated by a Hypervelocity Projectile[J]. Heat Transfer Research, 2007, 38(4): 291-297. [18] Kasahara J, Arai T, Matsuo A, et al. Experimental Investigations of Steady-State Oblique Detonation Waves Generated Around Hypersonic Projectiles[R]. AIAA 2001-1800. [19] Kasahara J, Fujiwara T, Endo T, et al. Chapman-Jouguet Oblique Detonation Structure Around Hypersonic Projectiles[J]. AIAA Journal, 2001, 39(8): 1553-1561. [20] 柳 森, 简和祥, 白智勇, 等. 37mm冲压加速器试验和计算[J]. 力学学报, 1999, 31(4): 450-455. [21] 柳 森, 简和祥, 白智勇, 等. 37mm冲压加速器热发射试验初步结果[J]. 流体力学实验与测量, 1999, 13(3): 32-36. [22] 崔东明, 范宝春, 邢晓江. 驻定在高速弹丸上的斜爆轰波[J]. 爆炸与冲击, 2002, 22(3): 263-266. [23] Kangshige M J, Shepherd J E. Oblique Detonation Stabilized on a Hypervelocity Projectile[J]. Symposium on Combustion, 1996, 26(2): 3015-3022. [24] Kasahara J, Aria T, Chiba S, et al. Criticality for Stabilized Oblique Detonation Waves Around Spherical Bodies in Acetylene/Oxygen/Krypton Mixtures[J]. Proceedings of the Combustion Institute, 2002, 29(2): 2817-2824. [25] Maeda S, Inada R, Kasahara J, et al. Visualization of the Non-Steady State Oblique Detonation Wave Phenomena Around Hypersonic Spherical Projectile[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2343-2349. [26] Maeda S, Kasahara J, Matsuo A. Oblique Detonation Wave Stability Around a Spherical Projectile by a High Time Resolution Optical Observation[J]. Combustion and Flame, 2012, 159: 887-896. [27] Maeda S, Sumiya S, Kasahara J, et al. Initiation and Sustaining Mechanisms of Stabilized Oblique Detonation Waves Around Projectiles[J]. Proceedings of the Combustion Institute, 2013, 34(2): 1973-1980. [28] Maeda S, Sumiya S, Kasahara J, et al. Scale Effect of Spherical Projectiles for Stabilization of Oblique Detonation Waves[J]. Shock Waves, 2015, 25: 141-150. [29] 方宜申, 胡宗民, 腾宏辉, 等. 圆球诱发斜爆轰波的数值研究[J]. 力学学报, 2017, 2(49): 268-273. [30] Pratt D T, Humphrey J W, Glenn D E. Morphology of Standing Oblique Detonation Waves[J]. Journal of Propulsion and Power, 1991, 7(5): 837-845. [31] Ashford S A, Emanuel G. Wave Angle for Oblique Detonation Waves[J]. Shock Waves, 1994, 3: 327-329. [32] Verreault J, Higgins A J, Stowe R A. Formation and Structure of Steady Oblique and Conical Detonation Waves[J]. AIAA Journal, 2012, 50(8): 1766-1772. [33] Ghorbanian K, Sterling J D. Influence of Formation Processes on Oblique Detonation Wave Stabilization[J]. Journal of Propulsion and Power, 1966, 12(3): 509-517. [34] 崔东明, 范宝春. 用于推进的驻定斜爆轰的基本特征[J]. 宇航学报, 1999, 20(2): 48-54. [35] Dabora E K, Nicholls J A, Morrison R B. The Influence of a Compressible Boundary on the Propagation of Gaseous Detonations[J]. Symposium on Combustion, 1965, 10(1): 817-830. [36] Broda J C. An Experimental Study of Oblique Detonation Waves[D]. Storrs: The University of Connecticut, 1993. [37] Viguier C, Figueira Da Silva L F, Desbordes D, et al. Onset of Oblique Detonation Waves: Comparison Between Experimental and Numerical Results for Hydrogen-Air Mixture[J]. Symposium on Combustion, 1996, 26(2): 3023-3031. [38] Srulijes J, Smeets G, Seiler F. Expansion Tube Experiments for the Investigation of Ram-Accelerator-Related Combustion and Gasdynamic Problems[R]. AIAA 92-3246. [39] Kamel M R, Morris C I, Stouklov I G, et al. PLIF Imaging of Hypersonic Reactive Flow Around Blunt Bodies[J]. Symposium on Combustion, 1996, 26(2): 2909-2915. [40] Morris C I, Kamel M R, Ben-Yakar A, et al. Combined Schlieren and OH PLIF Imaging Study of Ram Accelerator Flowfields[R]. AIAA 98-0244. [41] Morris C I, Kamel M R, Hanson R K. Shock-Induced Combustion in High-Speed Wedge Flows[J]. Symposium on Combustion, 1998, 27(2): 2157-2164. [42] Choi J Y, Jeung I S, Yoon Y. Computational Investigation of Structure and Dynamics of Oblique Detonation at Off-Attaching Condition[C]. Southampton: Proceedings of the 22nd International Symposium on Shock Waves, 1999. [43] 袁生学, 赵 伟, 黄志澄. 驻定斜爆轰波的初步实验观察[J]. 空气动力学学报, 2000, 18(4): 473-477. [44] 林志勇. 高静温超声速预混气爆震起爆与发展过程机理研究[D]. 长沙: 国防科技大学, 2008. [45] 韩 旭. 超声速预混气中爆震波起爆与传播机理研究[D]. 长沙: 国防科技大学, 2013. [46] Gong J S, Zhang Y N, Pan H, et al. Experimental Investigation on Initiation of Oblique Detonation Waves[R]. AIAA 2017-2350. [47] 刘云峰, 汪运鹏, 苑朝凯, 等. JF12长实验时间激波风洞10°尖锥气动力实验研究[J]. 气体物理, 2017, 2(2): 1-7. [48] 姚轩宇, 王 春, 喻 江, 等. JF12激波风洞高Mach数超燃冲压发动机实验研究[J]. 气体物理, 2019, 4(5): 25-31. [49] 卢洪波, 陈星, 君谋, 等. 新建高焓激波风洞Ma=8飞行模拟条件的实现与超燃实验[J]. 气体物理, 2019, 4(5): 13-24. [50] Li C, Kailasanath K, Oran E S. Detonation Structures behind Oblique Shocks[J]. Physics of Fluids, 1994, 6(4): 1600-1611. [51] Viguier C, Gourara A, Desbordes D. Three-Dimensional Structure of Stabilization of Oblique Detonation Wave in Hypersonic Flow[J]. Symposium on Combustion, 1998, 27(2): 2207-2214. [52] Vlasenko V V, Sabel'nikov V A. Numerical Simulation of Inviscid Flows with Hydrogen Combustion Behind Shock Waves and in Detonation Waves[J]. Combustion, Explosion, and Shock Wave, 1995, 31(3): 376-389. [53] Silva Da Figueira L F, Deshaies B. Stabilization of an Oblique Detonation Wave by a Wedge: A Parameter Numerical Study[J]. Combustion and Flame, 2000, 121(1): 152-166. [54] Wang A F, Zhao W, Jiang Z L. The Criterion of the Existence or Inexistence of Transverse Shock Wave at Wedge Supported Oblique Detonation Wave[J]. Acta Mechanism Sinica, 2011, 27(5): 611-619. [55] Teng H H, Jiang Z L. On the Transition Pattern of the Oblique Detonation Structure[J]. Journal of Fluid Mechanics, 2012, 713: 659-669. [56] Qin Q Y, Zhang X B. Study on the Transition Patterns of the Oblique Detonation Wave with Varying Temperature of the Hydrogen-Air Mixture[J]. Fuel, 2020, 274: 1-10. [57] Miao S K, Zhou J, Liu S J, et al. Formation Mechanism and Characteristics of Transition Patterns in Oblique Detonations[J]. Acta Astronautica, 2018, 142: 121-129. [58] Liu Y, Wang L, Xiao B G, et al. Hysteresis Phenomenon of the Oblique Detonation Wave[J]. Combustion and Flame, 2018, 192: 170-179. [59] Teng H H, Zhang Y N, Jiang Z L. Numerical Investigation on the Induction Zone Structure of the Oblique Detonation Waves[J]. Computers & Fluids, 2014, 95: 127-131. [60] 刘 岩, 武 丹, 王健平. 低马赫数下斜爆震波的结构[J]. 爆炸与冲击, 2015, 35(2): 203-207. [61] Liu Y, Wu D, Yao S B, et al. Analytical and Numerical Investigations of Wedge-Induced Oblique Detonation Waves at Low Inflow Mach Number[J]. Combustion Science and Technology, 2015, 187(6): 843-856. [62] Liu Y, Liu Y S, Wu D, et al. Structure of an Oblique Detonation Wave Induced by a Wedge[J]. Shock Waves, 2016, 26: 161-168. [63] Yang P F, Teng H H, Jiang Z L, et al. Effects of Inflow Mach Number on Oblique Detonation Initiation with a Two-Step Induction-Reaction Kinetic Model[J]. Combustion and Flame, 2018, 193: 246-256. [64] 戴 琪, 金 台, 罗 坤, 等. 驻定斜爆轰波起爆条件与结构的数值模拟研究[J]. 推进技术, 2018, 39(10): 2357-2362. [65] Teng H H, Yang P F, Jiang Z L. Numerical Study of Oblique Detonation Initiations with Chain Branching Kinetics[R]. AIAA 2017-1287. [66] Teng H H, Ng H D, Jiang Z. Initiation Characteristics of Wedge-Induced Oblique Detonation Waves in a Stoichiometric Hydrogen-Air Mixture[J]. Proceedings of the Combustion Institute, 2017, 36: 2735-2742. [67] Wang T, Zhang Y N, Teng H H, et al. Numerical Study of Oblique Detonation Wave Initiation in a Stoichiometric Hydrogen-Air Mixture[J]. Physics of Fluid, 2015, 27: 27-39. [68] Zhang Y N, Gong J S, Wang T. Numerical Study on Initiation of Oblique Detonation in Hydrogen-Air Mixtures with Various Equivalence Ratios[J]. Aerospace Science and Technology, 2016, 49: 130-134. [69] 陈 楠, Esfehani S A, Bhattrai S, 等. 当量比对斜爆震波诱导区特性影响的数值模拟研究[J]. 推进技术, 2018, 39(12): 2798-2805. [70] Fang Y S, Hu Z M, Teng H H, et al. Numerical Study of Inflow Equivalence Ratio Inhomogeneity on Oblique Detonation Formation in Hydrogen-Air Mixtures[J]. Aerospace Science and Technology, 2017, 71: 256-263. [71] Iwata K, Nakaya S, Tsue M. Wedge-Stabilized Oblique Detonation in an Inhomogeneous Hydrogen-Air Mixture[J]. Proceedings of the Combustion Institute, 2017, 36: 2761-2769. [72] Tian C, Teng H H, Ng H D. Numerical Investigation of Oblique Detonation Structure in Hydrogen-Oxygen Mixtures with Ar Dilution[J]. Fuel, 2019, 252: 496-503. [73] Zhang Y H, Fang Y S, Ng H D, et al. Numerical Investigation on the Initiation of Oblique Detonation Waves in Stoichiometric Acetylene-Oxygen Mixtures with High Argon Dilution[J]. Combustion and Flame, 2019, 204: 391-396. [74] Fang Y S, Zhang Y H, Deng X, et al. Structure of Wedge-Induced Oblique Detonation in Acetylene-Oxygen-Argon Mixtures[J]. Physics of Fluids, 2019, 31: 1-8. [75] Li C, Kailasanath K, Oran E S. Effects of Boundary Layers on Oblique-Detonation Structures[R]. AIAA 93-0450. [76] 王爱峰, 腾宏辉, 赵 伟, 等. 边界层对驻定斜爆轰结构和稳定性的影响[J]. 科学技术与工程, 2013, 13(23): 6781-6787. [77] 刘 彧, 周 进, 林志勇. 来流边界层效应下斜坡诱导的斜爆轰波[J]. 物理学报, 2014, 63(20): 221-228. [78] Yu M Y, Miao S K. Initiation Characteristics of Wedge-Induced Oblique Detonation Waves in Turbulence Flows[J]. Acta Astronautica, 2018, 147: 195-204. [79] Fang Y S, Zhang Z J, Hu Z M. Effects of Boundary Layer on Wedge-Induced Oblique Detonation Structures in Hydrogen-Air Mixtures[J]. International Journal of Hydrogen Energy, 2019, 44: 23429-23435. [80] 王爱峰, 赵 伟, 姜宗林. 斜爆轰的胞格结构及横波传播[J]. 爆炸与冲击, 2010, 30(4): 349-354. [81] 归明月, 范宝春. 尖劈诱导的斜爆轰波的精细结构及其影响因素[J]. 推进技术, 2012, 33(3): 490-494. [82] Gui M, Fan B. Wavelet Structure of Wedge-Induced Oblique Detonation Waves[J]. Combustion Science and Technology, 2012, 184(10-11): 1456-1470. [83] Verreault J, Higgins A J, Stowe R A. Formation of Transverse Waves in Oblique Detonations[J]. Proceedings of the Combustion Institute, 2013, 34(2): 1913-1920. [84] Teng H H, Jiang Z L, Ng H D. Numerical Study on Unstable Surfaces of Oblique Detonations[J]. Journal of Fluid Mechanics, 2014, 744: 111-128. [85] Grismer M J, Powers J M. Numerical Predictions of Oblique Detonation Stability Boundaries[J]. Shock Waves, 1996, 6(3): 147-156. [86] Teng H H, Ng H D, Li K, et al. Evolution of Cellular Structures on Oblique Detonation Surfaces[J]. Combustion and Flame, 2015, 162(2): 470-477. [87] Choi J Y, Kim D W, Jeung I S, et al. Cell-Like Structure of Unstable Oblique Detonation Wave from High-Resolution Numerical Simulation[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2473-2480. [88] Zhang Y N, Zhou L, Gong J S, et al. Effects of Activation Energy on the Instability of Oblique Detonation Surfaces with a One-Step Chemistry Model[J]. Physics of Fluids, 2018, 30(10). [89] Yang P F, Teng H H, Ng H D, et al. A Numerical Study on the Instability of Oblique Detonation Waves with a Two-Step Induction-Reaction Kinetic Model[J]. Proceedings of the Combustion Institute, 2019, 37: 3537-3544. [90] Zhang Y N, Yang P F, Teng H H, et al. Transition Between Different Initiation Structures of Wedge-Induced Oblique Detonations[J]. AIAA Journal, 2018, 56(10): 4016-4023. [91] Fusina G, Sislian J P, Parent B. Formation and Stability of near Chapman-Jouguet Standing Oblique Detonation Waves[J]. AIAA Journal, 2005, 43(7): 1591-1604. [92] Miao S K, Zhou J, Lin Z Y, et al. Numerical Study on Thermodynamic Efficiency and Stability of Oblique Detonation Waves[J]. AIAA Journal, 2018, 56(8): 3112-3122. [93] 陈 楠, Bhattrai S, 唐 豪. 温度扰动对ODW结构影响的数值模拟[J]. 北京航空航天大学学报, 2018, 44(7): 1537-1546. [94] Yang P F, Ng H D, Teng H H. Numerical Study of Wedge-Induced Oblique Detonations in Unsteady Flow[J]. Journal of Fluid Mechanism, 2019, 876: 264-287. [95] Choi J Y, Shin E J R, Jeung I S. Unstable Combustion Induced by Oblique Shock Waves at the Non-Attaching Condition of the Oblique Detonation Wave[J]. Proceedings of the Combustion Institute, 2009, 32: 2387-2396. [96] Papalexandris M V. A Numerical Study of Wedge-Induced Detonations[J]. Combustion and Flame, 2000, 120: 526-538. [97] Walter M A T, Silva L F F. Numerical Study of Detonation Stabilization by Finite Length Wedges[J]. AIAA Journal, 2006, 44(2): 353-361. [98] Liu Y, Han X, Yao X, et al. A Numerical Investigation of the Prompt Oblique Detonation Wave Sustained by a Finite-Length Wedge[J]. Shock Waves, 2016, 26(6): 729-739. [99] Fang Y S, Hu Z M, Teng H H. Numerical Investigation of Oblique Detonations Induced by a Finite Wedge in a Stoichiometric Hydrogen-Air Mixture[J]. Fuel, 2018, 234: 502-507. [100] Xiang G X, Li X D, Sun X F, et al. Investigations on Oblique Detonations Induced by a Finite Wedge in High Altitude[J]. Aerospace Science and Technology, 2019, 95: 1-6. [101] Xiang G X, Li X D, Cao R H, et al. Study of the Features of Oblique Detonation Induced by a Finite Wedge in Hydrogen-Air Mixtures with Varying Equivalence Ratios[J]. Fuel, 2020, 264: 1-7. [102] Lu F K, Fan H, Wilson D R. Detonation Waves Induced by a Confined Wedge[J]. Aerospace Science and Technology, 2006, 10(8): 679-685. [103] Bhattrai S, Tang H. Formation of near-Chapman-Jouguet Oblique Detonation Wave over a Dual-Angle Ramp[J]. Aerospace Science and Technology, 2017, 63: 1-8. [104] Bomjan B, Bhattrai, Tang H. Characterization of Induction and Transition Methods of Oblique Detonation Waves over Dual-Angle Wedge[J]. Aerospace Science and Technology, 2018, 82-83: 394-401. [105] Qin Q Y, Zhang X B. Study on the Effects of Geometry on the Initiation Characteristics of the Oblique Detonation Wave for Hydrogen-Air Mixture[J]. International Journal of Hydrogen Energy, 2019, 44: 17004-17014. [106] Qin Q Y, Zhang X B. A Novel Method for Trigger Location Control of the Oblique Detonation Wave by a Modified Wedge[J]. Combustion and Flame, 2018, 197: 65-77. [107] Fang Y S, Zhang Z J, Hu Z M, et al. Initiation of Oblique Detonation Waves Induced by Blunt Wedge in Stoichiometric Hydrogen-Air Mixtures[J]. Aerospace Science and Technology, 2019, 92: 676-684. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
General Visit:
Visit Today:
Currently Online: