WU Gang1,2, JIANG Hao1, LI Tie1, YI Ping1, WANG Teng-fei1. Research Prospect and Advancement of Black Carbon Emissions from Marine Diesel Engines[J]. Journal of Propulsion Technology, 2020, 41(11): 2427-2437.
[1] Bond T C, Doherty S J, Fahey D W, et al. Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(11): 5380-5552.
[2] Comer B. Black Carbon Emissions and Fuel Use in Global Shipping[R]. Washington D C: International Council on Clean Transportation, 2017.
[3] Corbett J, Winebrake J, Green H, al et, Mortality from Ship Emissions: A Global Assessment[J]. Environmental Science & Technology, 2007, 41(24): 8512-8518.
[4] EPA M. Report to Congress on Black Carbon[R]. Washington D C: Department of the Interior, and Related Agencies, 2012.
[5] GB15097-2016, 船舶发动机排气污染物排放限值及测量方法(中国第一、二阶段)[S].
[6] Di Natale F, Carotenuto C. Particulate Matter in Marine Diesel Engines Exhausts: Emissions and Control Strategies[J]. Transportation Research Part D: Transport and Environment, 2015, 40: 166-191.
[7] Maricq M M. Examining the Relationship Between Black Carbon and Soot in Flames and Engine Exhaust[J]. Aerosol Science and Technology, 2014, 48(6): 620-629.
[8] Kholghy M. Detailed and Fundamental Modeling of Soot Formation[EB/OL]. https://thomsonlab.mie.utoronto.ca/detailed-and-fundamental-modeling-of-soot-formation/,2020-09-11.
[9] Reilly P T A, Gieray R A, Whitten W B, et al. Direct Observation of the Evolution of the Soot Carbonization Process in an Acetylene Diffusion Flame Via Real-Time Aerosol Mass Spectrometry[J]. Combustion and Flame, 2000, 122(1-2): 90-104.
[10] Kholghy R, Veshkini A, Thomson J. The Core-Shell Internal Nanostructure of Soot: A Criterion to Model Soot Maturity[J]. Carbon, 2016, 100: 508-536.
[11] Johansson K O, Head-Gordon M P, Schrader P E, et al. Resonance-Stabilized Hydrocarbon-Radical Chain Reactions May Explain Soot Inception and Growth[J]. Science, 2018, 361: 997-1000.
[12] Dec J E. A Conceptual Model of Di Diesel Combustion Based on Laser-Sheet Imaging[R]. SAE TP-970873, 1997.
[13] Black F. High Methodology for Determining Particulate and Gaseous Diesel Hydrocarbon Emissions[R]. SAE TP-790422, 1979.
[14] Hilden D L, Mayer W J. The Contribution of Engine Oil to Particulate Exhaust Emissions from Light-Duty, Diesel-Powered Vehicles[R]. SAE TP-841395, 1984.
[15] Buchholz B A, Dibble R W, Rich D, et al. Quantifying the Contribution of Lubrication Oil Carbon to Particulate Emissions from a Diesel Engine[R]. SAE TP-2003-01-1987.
[16] Jones H, Mctaggart G, Rogak S. Source Apportionment of Particulate Matter from a Diesel Pilot-Ignited Natural Gas Fuelled Heavy Duty Di Engine[R]. SAE TP-2005-01-2149.
[17] Lieke K I, Rosen?rn T, Pedersen J, et al. Micro-and Nanostructural Characteristics of Particles Before and After an Exhaust Gas Recirculation System Scrubber[J]. Aerosol Science and Technology, 2013, 47(9): 1038-1046.
[18] Jiang H, Wu G, Li T, et al. Characteristics of Particulate Matter Emissions from a Low-Speed Marine Diesel Engine at Various Loads[J]. Environmental Science & Technology, 2019, 53(19): 11552-11559.
[19] Lee K O, Cole R, Sekar R, et al. Morphological Investigation of the Microstructure, Dimensions, and Fractal Geometry of Diesel Particulates[J]. Proceedings of the Combustion Institute, 2002, 29(1): 647-653.
[20] Jiang H, Li T, Wang Y, et al. The Evolution of Soot Morphology and Nanostructure Along Axial Direction in Diesel Spray Jet Flames[J]. Combustion & Flame, 2019, 199: 204-212.
[21] Jiang H, Li T, Wang Y, et al. Morphology and Nano-Structure Analysis of Soot Particles Sampled from High Pressure Diesel Jet Flames under Diesel-Like Conditions[J]. Measurement Science & Technology, 2018, 29(4).
[22] Pahalagedara L, Sharma H, Kuo C H, et al. Structure and Oxidation Activity Correlations for Carbon Blacks and Diesel Soot[J]. Energy Fuels, 2012, 26: 6757-6764.
[23] Lu T, Cheung C S, Huang Z. Effects of Engine Operating Conditions on the Size and Nanostructure of Diesel Particles[J]. Journal of Aerosol Science, 2012, 47: 27-38.
[24] Wang L, Song C, Song J, et al. Aliphatic C-H and Oxygenated Surface Functional Groups of Diesel In-Cylinder Soot: Characterizations and Impact on Soot Oxidation Behavior[J]. Proceedings of the Combustion Institute, 2013, 34(2): 3099-3106.
[25] 贺鹏飞, 李 铁, 姜 浩, 等. 柴油喷雾火焰中碳烟颗粒形貌及纳观结构特性[J]. 内燃机学报, 2019, 37(3): 251-256.
[26] Kittelson D B. Engines and Nanoparticles: a Review[J]. Journal of Aerosol Science, 1998, 29(5-6): 575-588.
[27] Kasper A, Aufdenblatten S, Forss A, et al. Particulate Emissions from a Low-Speed Marine Diesel Engine[J]. Aerosol Science and Technology, 2007, 41 (1): 24-32.
[28] Ashraful A M, Masjuki H H, Kalam M A. Particulate Matter, Carbon Emissions and Elemental Compositions from a Diesel Engine Exhaust Fuelled with Diesel-Biodiesel Blends[J]. Atmospheric Environment, 2015, 120: 463-474.
[29] Wu D, Zhang F, Lou W, et al. Chemical Characterization and Toxicity Assessment of Fine Particulate Matters Emitted from the Combustion of Petrol and Diesel Fuels[J]. Science of the Total Environment, 2017, 605: 172-179.
[30] GB 17691-2018, 重型柴油车污染物排放限值及测量方法(中国第六阶段)[S].
[31] Zhang R, Zhang Y, Kook S. Morphological Variations of In-Flame and Exhaust Soot Particles Associated with Jet-to-Jet Variations and Jet-Jet Interactions in a Light-Duty Diesel Engine[J]. Combustion and Flame, 2017, 176: 377-390.
[32] CIMAC Working Group. Background Information on Black Carbon Emissions from Large Marine and Stationary Diesel Engines-Definition, Method Measurement, Emission Factors and Abatement Technologies[R]. Frankfurt: The International Council on Combustion Engines, 2012.
[33] Lack D A, Corbett J J. Black Carbon from Ships: A Review of the Effects of Ship Speed, Fuel Quality and Exhaust Gas Scrubbing[J]. Atmospheric Chemistry & Physics, 2012, 12(9): 3985-4000.
[34] Corbett J J, Lack D A. Investigation of Appropriate Control Measures to Reduce Black Carbon Emissions from International Shipping[R]. London: International Maritime Organization, 2012.
[35] Ristimaki J, Hellen G, Lappi M. Chemical and Physical Characterization of Exhaust Particulate Matter from a Marine Medium Speed Diesel Engine[C]. Bergen: CIMAC Congress, 2010.
[36] Corporation W?rtsil?. Marine Market Emissions Reduced with New W?rtsil? 31SG Pure Gas Engine[EB/OL]. https: //www.wartsila.com/media/news/17-09-2019-marine-market-emissions-reduced-with-new-wartsila-31sg -pure-gas-engine-2528265, 2020-09-11.
[37] Zhang Z H, Balasubramanian R. Physicochemical and Toxicological Characteristics of Particulate Matter Emitted from a Non-Road Diesel Engine: Comparative Evaluation of Biodiesel-Diesel and Butanol-Diesel Blends[J]. Journal of Hazardous Materials, 2014, 264: 395-402.
[38] Pickett L M, Siebers D L. Soot in Diesel Fuel Jets: Effects of Ambient Temperature, Ambient Density, and Injection Pressure[J]. Combustion and Flame, 2004, 138(1-2): 114-135.
[39] Han Z, Uludogan A, Hampson G J, et al. Mechanism of Soot and NOx Emission Reduction Using Multiple-Injection in a Diesel Engine[R]. SAE TP-960633, 1996.
[40] Wu G, Zhou X, Li T. Temporal Evolution of Split-Injected Fuel Spray at Elevated Chamber Pressures[J]. Energies, 2019, 12: 4284-4296.
[41] Li T, Ogawa H. Analysis of the Trade-Off Between Soot and Nitrogen Oxides in Diesel-Like Combustion by Chemical Kinetic Calculation[J]. SAE International Journal of Engines, 2012, 5(2): 94-101.
[42] Ogawa H, Li T, Miyamoto N. Characteristics of Low Temperature and Low Oxygen Diesel Combustion with Ultra-High EGR[J]. International Journal of Engine Research, 2007, 8 (4): 365-378.
[43] Li T, Suzuki M, Shudo T, Ogawa H. Characteristics of Nano-Particulate Matter from Ultra-High EGR Low Temperature Diesel Combustion[J]. Transactions of the JSME (Series B), 2008, 74(741): 207-212.
[44] Li T, Suzuki M, Ogawa H. The Effect of Two-Stage Injection on Unburned Hydrocarbon and Carbon Monoxide Emissions in Smokeless Low Temperature Diesel Combustion with Ultra-High Exhaust Gas Recirculation[J] International Journal of Engine Research, 2010, 11 (5): 345-354.
[45] Li T, Moriwaki R, Ogawa H, et al. Dependence of Premixed Low-Temperature Diesel Combustion on Fuel Ignitability and Volatility[J]. International Journal of Engine Research, 2012, 13 (1): 14-27.
[46] Schmid H, Weisser G. Marine Technologies for Reduced Emissions[C]. Amsterdam: Conference on Green Ship Technology, 2005.