Theory and Technical Challenge of Scaled Model Experiments in Marine Diesel Engines
1.State Key Laboratory of Ocean Engineering,School of Naval Architecture,Ocean and Civil Engineering, Shanghai Jiaotong University,Shanghai 200240,China;2.Institute of Power Plants and Automation,Shanghai 200240,China
ZHOU Xin-yi1,2, LI Tie1,2, YI Ping1,2. Theory and Technical Challenge of Scaled Model Experiments in Marine Diesel Engines[J]. Journal of Propulsion Technology, 2020, 41(11): 2408-2417.
[1] Tabri K, M??tt?nen J, Ranta J. Model-Scale Experiments of Symmetric Ship Collisions[J]. Journal of Marine Science and Technology, 2008, 13: 71-84.
[2] 高玉闪, 刘小勇, 金 平. 全流量补燃循环气气燃烧相似性缩尺试验研究[J]. 推进技术, 2019, 40(7): 1554-1559.
[3] 刘 洋, 王彦富, 张晓磊. 半敞开式隧道火灾模型设计相似性论证[J]. 安全与环境学报, 2014, 14(5): 90-93.
[4] 余 佳, 田 辉, 蔡国飙. 固液混合火箭发动机缩尺效应研究[J]. 火箭推进, 2015, 41(2): 33-37.
[5] Lanchester F W. The Horse-Power of the Petrol Motor in Its Relation to Bore, Stroke and Weight[J]. Proceedings of the Institution of Automobile Engineers, 1906, 1(2): 153-220.
[6] Chikahisa T, Murayama T. Theory on Combustion Similarity for Different Size Diesel Engines[J]. Transactions of the Japan Society of Mechanical Engineers Series B, 1988, 54(508): 3579-3584.
[7] Staples L R, Reitz R D, Hergart C. An Experimental Investigation into Diesel Engine Size-Scaling Parameters[J]. SAE International Journal of Engines, 2009, 2(1): 1068-1084.
[8] Tess M J, Lee C W, Reitz R D. Diesel Engine Size Scaling at Medium Load Without EGR[J]. SAE International Journal of Engines, 2011, 4(1): 1993-2009.
[9] Kobashi Y, Tanaka Y, Shibata G, et al. An Investigation of the Effects of Engine Size and Rotation Speed on Diesel Combustion Based on Similarity Rules[R]. SAE 2019-01-2181.
[10] Inagaki K, Mizuta J, Kawamura K, et al. Theoretical Study on Spray Design for Small-Bore Diesel Engine(First report)[R]. SAE 2016-01-0740.
[11] Takada N, Hashizume T, Tomoda T, et al. Theoretical Study on Spray Design for Small-Bore Diesel Engine (Second report)[J]. SAE International Journal of Engines, 2017, 10(3): 1110-1018.
[12] Chikahisa T, Kikuta K, Murayama T. Combustion Similarity for Different Size Diesel Engines: Theoretical Prediction and Experimental Results[R]. SAE 920465, 1992.
[13] Bergin M, Reitz R D, Hessel R P. Soot and NOx Emissions Reduction in Diesel Engines via Spin-Spray Combustion[C]. Irvine: Proceedings of the 18th Annual Conference on Liquid Atomization and Spray Systems, 2005.
[14] Stager L A, Reitz R D. Assessment of Diesel Engine Size-Scaling Relationships[R]. SAE 2007-01-0127.
[15] 周昕毅, 李 铁, 赖哲渊, 等. 柴油机非蒸发喷雾相似性研究[J]. 内燃机工程, 2018, 39(5): 1-7.
[16] Zhou X Y, Li T, Lai Z Y, et al. Scaling Fuel Sprays for Different Size Diesel Engines[J]. Fuel, 2018, 225: 358-369.
[17] Zhou X Y, Li T, Lai Z Y, et al. Modeling Spray Tip and Tail Penetrations after End-of-Injection[J]. Fuel, 2019, 237: 442-456.
[18] Zhou X Y, Li T, Lai Z Y, et al. Similarity of Split-Injected Fuel Sprays for Different Size Diesel Engines[J]. International Journal of Engine Research, DOI: 10.1177/1468087419849771.
[19] Zhou X Y, Li T, Wei Y J, et al. Scaling Liquid Penetration in Evaporating Sprays for Different Size Diesel Engines[J]. International Journal of Engine Research, 2020, 21(9).
[20] Zhou X Y, Li T, Lai Z Y, et al. Theoretical Study on Similarity of Diesel Combustion[R]. SAE 2018-01-0235.
[21] 赖哲渊, 李 铁, 周昕毅, 等. 柴油机喷雾燃烧相似性理论基础研究[J]. 内燃机工程, 2018, 39(3): 1-7.
[22] Zhou X Y, Li T, Wei Y J, et al. Scaling Spray Combustion Processes in Marine Low-Speed Diesel Engines[J]. Fuel, 2019, 258: 116-133.
[23] Zhou X Y, Li T, Lai Z Y. Scaled Model Experiments for Marine Low-Speed Diesel Engines[R]. SAE 2019-01-2182.
[24] Zhou X Y, Li T, Wei Y J. Simulation Data for Similarity of Spray Combustion Processes in Marine Low-Speed Diesel Engines[J]. Data in Brief, 2020, 28(10).
[25] Wakuri Y, Fujii M, Amitani T, et al. Studies on the Penetration of Fuel Spray in a Diesel Engine[J]. Bulletin of JSME, 1960, 3(9): 123-130.
[26] Katsura N, Saito M, Senda J, et al. Characteristics of a Diesel Spray Impinging on a Flat Wall[R]. SAE 890264, 1989.
[27] Rodrigues F, Mesler R. Some Drops Don't Splash[J]. Journal of Colloid and Interface Science, 1985, 106(2): 347-352.
[28] Mundo C, Sommerfeld M, Tropea C. Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process[J]. International Journal of Multiphase Flow, 1995, 21(2): 151-173.
[29] Yarin A L, Weiss D A. Impact of Drops on Solid Surfaces: Self-Similar Capillary Waves, and Splashing as a New Type of Kinematic Discontinuity[J]. Journal of Fluid Mechanics, 1995, 283: 141-173.
[30] Musculus M P B, Kattke K. Entrainment Waves in Diesel Jets[R]. SAE 2009-01-1355.
[31] Inagaki K, Mizuta J, Nomura Y, et al. Proposal of Wall Heat Transfer Coefficient Applicable to Spray-Wall Interaction Process in Diesel Engines (First Report)[C]. Yokohama: 2018 JSAE Annual Congress Spring, 2018.
[32] Eilts P. Similarity Considerations on Wall Heat Losses in Internal Combustion Engines[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1991, 205(2): 139-142.
[33] Shi Y, Reitz R D. Study of Diesel Engine Size Scaling Relationships Based on Turbulence and Chemistry Scales[R]. SAE 2008-01-0955.
[34] Woschni G. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine[R]. SAE 670931, 1967.
[35] Lee C W, Reitz R D, Kurtz E. The Impact of Engine Design Constraints on Diesel Combustion System Size Scaling[R]. SAE 2010-01-0180.