Extraction of Propagation Structure on Stratified Swirl Flame Dynamics under Velocity Fluctuation
National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering,Beihang University,Beijing 100191,China
ZHANG Chi, TAO Chao, HAN Xiao, ZHOU Yu-chen, LIN Yu-zhen. Extraction of Propagation Structure on Stratified Swirl Flame Dynamics under Velocity Fluctuation[J]. Journal of Propulsion Technology, 2021, 42(1): 173-184.
[1] 张 弛, 林宇震, 徐华胜, 等. 民用航空发动机低排放燃烧室技术发展现状及水平[J]. 航空学报, 2014, 35(2): 332-350.
[2] Chu B T. On the Energy Transfer to Small Disturbances in Fluid Flow (Part I)[J]. Acta Mechanica, 1964, 1(3): 215-234.
[3] McManus K R, Poinsot T, Candel S M. A Review of Active Control of Combustion Instabilities[J]. Progress in Energy and Combustion Science, 1993, 19: 1-29.
[4] Zhao D, Lu Z, Zhao H, et al. A Review of Active Control Approaches in Stabilizing Combustion Systems in Aerospace Industry[J]. Progress in Aerospace Sciences, 2018, 47(3): 35-60.
[5] Han X, Hui X, Zhang C, et al. Combustion Instabilities in a Lean Premixed Pre-Vaporized Combustor at High-Pressure High-Temperature[R]. ASME GT 2017-65190.
[6] 李国能. 燃烧诱发热声不稳定特性及控制研究[D]. 杭州: 浙江大学, 2009.
[7] 李 磊, 孙晓峰. 推进动力系统燃烧不稳定性产生的机理、预测及控制方法[J]. 推进技术, 2010, 31(6): 710-720.
[8] Ducruix S, Schuller T, Durox D, et al. Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms[J]. Journal of Propulsion and Power, 2003, 19 (5): 722-734.
[9] Han X, Laera D, Morgans A S, et al. Flame Macrostructures and Thermoacoustic Instabilities in Stratified Swirling Flames[J]. Proceedings of the Combustion Institute, 2019, 37(4): 5377-5384.
[10] 张 弛, 王 波, 邹鹏飞, 等. 同心旋流分层火焰的外激脉动特性统计学分析[J]. 航空动力学报, 2017, 32(8): 1801-1808.
[11] 张 弛, 周宇晨, 韩 啸, 等. 同心旋流分层预混火焰的动力学模态分析[J]. 推进技术, 2020, 41(3): 595-604.
[12] Tautschnig G, Hampel B, Hirsch C, et al. Experimental Investigation of OH* and CH* Chemiluminescence under Varying Operating Conditions[R]. ASME GT 2013-95850.
[13] Sick V. High Speed Imaging in Fundamental and Applied Combustion Research[J]. Proceedings of the Combustion Institute, 2013, 34(2): 3509-3530.
[14] Ruan C, Chen F, Cai W, et al. Principles of Non-Intrusive Diagnostic Techniques and Their Applications for Fundamental Studies of Combustion Instabilities in Gas Turbine Combustors: a Brief Review[J]. Aerospace Science and Technology, 2019, 84: 585-602.
[15] Iudiciani P, Duwig C, Husseini S M, et al. Proper Orthogonal Decomposition for Experimental Investigation of Flame Instabilities[J]. AIAA Journal, 2012, 50(9): 1843-1854.
[16] Ek H, Proscia W, Lieuwen T, et al. Re-Oriented POD for Feature Extraction from Time Resolved Reacting Flow Datasets[R]. ASME GT 2019-90954.
[17] Syred N. A Review of Oscillation Mechanisms and the Role of the Processing Vortex Core(PVC) in Swirl Combustion Systems[J]. Progress in Energy and Combustion Science, 2006, 32(2): 93-161.
[18] Huang Y, Yang V. Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion[J]. Progress in Energy and Combustion Science, 2009, 35(4): 293-364.
[19] Chterev I, Foley C, Foti D, et al. Flame and Flow Topologies in an Annular Swirling Flow[J]. Combustion Seience and Technology, 2014, 186(8): 1041-1074.
[20] Han X, Laera D, Yang D, et al. Flame Interactions in a Stratified Swirl Burner: Flame Stabilization, Combustion Instabilities and Beating Oscillations[J]. Combustion and Flame, 2020, 212: 500-509.
[21] Schmidt O T, Schmid P J. A Conditional Space-Time POD Formalism for Intermittent and Rare Events: Example of Acoustic Bursts in Turbulent Jets[J]. Journal of Fluid Mechanics, 2019, 867.
[22] 尹芳黎, 杨雁莹, 王传栋, 等. 矩阵奇异值分解及其在高维数据处理中的应用[J]. 数学的实践与认识, 2011, 41(15): 173-179.
[23] Rajasegar R, Mitsingas C M, Mayhew E, et al. Proper Orthogonal Decomposition for Flame Dynamics of Microwave Plasma Assisted Swirl Stabilized Premixed Flames[C]. Texas: 55th AIAA Aerospace Sciences Meeting, 2017.