LI Bin, ZHANG Lei, YANG Zi-chun, SUN Wen-cai. Reconstruction of Dykas Turbine Cascade Profile Based on Seeker Optimization Algorithm[J]. Journal of Propulsion Technology, 2020, 41(11): 2530-2537.
[1] Mambro A, Galloni E, Congiu F, et al. Modelling of Low-Pressure Steam Turbines Operating at Very Low Flowrates: A Multiblock Approach[J]. Applied Thermal Engineering, 2019, 158: 1-9.
[2] 陆英栋, 杨自春, 张 磊, 等. 小容积流量下船用核湿汽轮机末级流场稳定性分析[J]. 核动力工程, 2019, 40(5): 67-73.
[3] Yu Xing-gang, Xiao Zhi-huai, Xie Dan-mei, et al. A 3D Method to Evaluate Moisture Losses in a Low Pressure Steam Turbine: Application to a Last Stage[J]. International Journal of Heat and Mass Transfer, 2015, 84: 642-652.
[4] 李 亮, 薛太旭, 李 森. 考虑气动和湿汽损失综合影响的低压多级透平优化[J]. 西安交通大学学报, 2016, 50(3): 22-28.
[5] 周岳琨, 王建新, 管继伟, 等. 汽轮机叶片设计和几何成型方法综述[J]. 汽轮机技术, 2001, 43(4): 198-202.
[6] 田 辉, 孙秀玲, 郭 涛, 等. 基于遗传算法的离心泵叶片水力性能优化[J]. 农业机械学报, 2010, 41(5): 64-67.
[7] 李 彬, 宋立明, 李 军, 等. 长叶片透平级多学科多目标优化设计[J]. 西安交通大学学报, 2014, 48(1): 1-6.
[8] 张人会, 吴 昊, 杨军虎, 等. 基于本征正交分解法的液环泵气液两相流场重构[J]. 农业机械学报, 2017, 48(6): 381-386.
[9] 万 玉, 许思传, 张 良. 燃料电池车用离心叶轮型线参数化及多工况优化[J]. 同济大学学报(自然科学版), 2017, 45(1): 98-108.
[10] Mohaghegh K, Sadeghi M H, Abdullah A. Reverse Engineering of Turbine Blade Based on Design Intent[J]. The International Journal of Advanced Manufacturing Technology, 2007, 32(9): 1009-1020.
[11] Mohaghegh K, Sadeghi M H, Abdullah A, et al. Improvement of Reverse Engineered Turbine Blades Using Construction Geometry[J]. The International Journal of Advanced Manufacturing Technology, 2010, 49: 675-687.
[12] Zhao Zheng-cai, Fu Yu-can, Liu Xuan, et al. Measurement-Based Geometric Reconstruction for Milling Turbine Blade Using Free-Form Deformation[J]. Measurement, 2017, 101(Supplement C): 19-27.
[13] 余胜威, 曹中清. 基于人群搜索算法的PID控制参数优化[J]. 计算机仿真, 2014, 31(9): 347-350.
[14] Maji K B, De B P, Kar R, et al. CMOS Analog Amplifier Circuits Design Using Seeker Optimization Algorithm[J]. IETE Journal of Research, 2019, 85(10): 1-10.
[15] Zhang Guojie, Zhang Sen, Zhou Zhongning, et al. Numerical Study of Condensing Flow Based on the Modified Model[J]. Applied Thermal Engineering, 2017, 127: 1206-1214.
[16] Zhang Guojie, Wang Liang, Zhang Sen, et al. Effect Evaluation of a Novel Dehumidification Structure Based on the Modified Model[J]. Energy Conversion & Management, 2018, 159: 65-75.
[17] Han Xu, Zeng Wei, Han Zhonghe. Investigation of the Comprehensive Performance of Turbine Stator Cascades with Heating Endwall Fences[J]. Energy, 2019, 174: 1188-1199.
[18] Han Xu, Zeng Wei, Han Zhonghe. Investigating the Dehumidification Characteristics of the Low-Pressure Stage with Blade Surface Heating[J]. Applied Thermal Engineering, 2020, 164: 1-15.
[19] 李 瑜, 李 亮, 钟刚云, 等. 末级透平对低压缸气动和凝结特性的影响[J]. 西安交通大学学报, 2012, 46(7): 16-20.
[20] Noori R A, Kouhikamali R, Atashkari K. Two-Fluid Model for Simulation of Supersonic Flow of Wet Steam Within High Pressure Nozzles[J]. International Journal of Thermal Sciences, 2015, 96: 173-182.
[21] 李 彬, 杨自春, 曹跃云, 等. 进汽参数对汽轮机叶栅通道内自发凝结影响的数值分析[J]. 工程热物理学报, 2019, 40(11): 2502-2509.
[22] 王 智, 安连锁, 韩中合. 叶栅形状变化对自发凝结影响的数值研究[J]. 中国电机工程学报, 2009, 29(35): 125-130.
[23] Noori R A, Ahmadpour A, Abadi S M, et al. CFD-Based Shape Optimization of Steam Turbine Blade Cascade in Transonic Two Phase Flows[J]. Applied Thermal Engineering, 2017, 112: 1575-1589.
[24] 那振喆, 刘 波, 史 磊, 等. 基于端壁造型优化的高压涡轮导向器流场分析[J]. 推进技术, 2017, 38(4): 130-137.
[25] Dykas S, Majkut M, Strozik M, et al. Experimental Study of Condensing Steam Flow in Nozzles and Linear Blade Cascade[J]. International Journal of Heat & Mass Transfer, 2015, 80: 50-57.