[1] 马 虎, 武晓松, 王 栋, 等. 旋转爆震发动机数值研究[J]. 推进技术, 2012, 33(5).
[2] Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous Spin Detonations[J]. Journal of Propulsion and Power, 2006, 22(6): 1204-1216.
[3] Nakagami S, Matsuoka K, Kasahara J, et al. Experimental Visualization of the Structure of Rotating Detonation Waves in a Disk-Shaped Combustor[J]. Journal of Propulsion and Power, 2016, 33(1): 1-9.
[4] Nakagami S, Matsuoka K, Kasahara J, et al. Experimental Study of the Structure of Forward-Tilting Rotating Detonation Waves and Highly Maintained Combustion Chamber Pressure in a Disk-Shaped Combustor[J]. Proceedings of the Combustion Institute, 2016, 36(2).
[5] Higashi J, Nakagami S, Matsuoka K, et al. Experimental Study of the Disk-Shaped Rotating Detonation Turbine Engine[C]. Grapevine: 55th AIAA Aerospace Sciences Meeting, 2017.
[6] 夏镇娟, 周胜兵, 马 虎, 等. 圆盘结构下旋转爆震波传播特性的实验研究[J]. 爆炸与冲击, 2018, 38(5): 937-947.
[7] Xia Z, Ma H, Liu C, et al. Experimental Investigation on the Propagation Mode of Rotating Detonation Wave in Plane-Radial Combustor[J]. Experimental Thermal and Fluid Science, 2019, 103: 364-376.
[8] Scott A B. Flow Behavior in Radial Rotating Detonation Engines[D] Ohio: Wright-Patterson Air Force Base, 2019.
[9] Scott A B, Marc D P, Riley H. et al. Experimental Flow Visualization in a Radial Rotating Detonation Engine[C]. San Diego: AIAA SciTech Forum, 2019.
[10] Huff R, Polanka M D, McClearn M J, et al. A Disk Rotating Detonation Engine Driven Auxiliary Power Unit[C]. Cincinnati: AIAA Propulsion and Energy Forum, 2018.
[11] McClearn M J, Schauer F R, Huff R, et al. A Disk Rotating Detonation Engine Part 2: Operation[C]. Kissimmee: AIAA Aerospace Sciences Meeting, 2018.
[12] Huff R, Polanka M D, McClearn M J, et al. A Disk Rotating Detonation Engine Part 1: Design and Buildup[C]. Kissimmee: AIAA Aerospace Sciences Meeting, 2018.
[13] 夏镇娟, 马 虎, 葛高杨, 等. 当量比对圆盘结构下旋转爆震波传播的影响[J]. 气体物理, 2019, (6): 1-10.
[14] Xia Z, Ma H, Zhuo C, et al. Propagation Process of H2/Air Rotating Detonation Wave and Influence Factors in Plane-Radial Structure[J]. International Journal of Hydrogen Energy, 2018, 43(9): 4609-4622.
[15] Watanabe T, Jourdaine N H, Tsuboi N, et al. Three-dimensional Numerical Simulation of Disk Rotating Detonation Engine;Unsteady Flow Structure[C]. San Diego: AIAA Scitech 2019 Forum, 2019.
[16] 夏镇娟, 武晓松, 马 虎, 等. 圆盘结构下旋转爆震波的二维数值研究[J]. 推进技术, 2017, 38(6): 1409-1418.
[17] 夏镇娟, 马 虎, 卓长飞, 等. 圆盘结构下旋转爆震波的非稳定传播特性[J]. 航空学报, 2018, 39(2).
[18] Ishiyama C, Miyazaki K, Nakagami S, et al. Experimental Study of Research of Centrifugal-Compressor-Radial-Turbine Type Rotating Detonation Engine[C]. Salt Lake: 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016.
[19] Bykovskii F A, Zhdan S A, Vedernikov E F, et al. Detonation Combustion of Coal[J]. Combustion, Explosion and Shock Waves, 2012, 48(2): 203-208.
[20] Bykovskii F A, Zhdan S A, Vedernikov E F, et al. Continuous Spin Detonation of a Coal-Air Mixture in a Flow-Type Plane-Radial Combustor[J]. Combustion, Explosion and Shock Waves, 2013, 49(6): 705-711.
[21] Bykovskii F A, Zhdan S A, Vedernikov E F, et al. Detonation of a Coal-Air Mixture with Addition of Hydrogen in Plane-Radial Vortex Chambers[J]. Combustion, Explosion and Shock Waves, 2011, 47(4): 473-482.
[22] Bykovskii F A, Zhdan S A, Vedernikov E F, et al. Continuous and Pulsed Detonation of a Coal-Air Mixture[J]. Doklady Physics, 2010, 55(3): 142-144.
[23] 王 超. 吸气式连续旋转爆震波自持传播机制研究[D]. 长沙: 国防科技大学, 2016.
[24] Dong G, Liu H, Chen Y. General, Nitrogen-Containing Semi-Detailed Chemical Kinetic Mechanism for Methane Laminar Premixed Flame[J]. Combustion Science and Technology, 2002, (8): 44-48.
[25] 王健平, 姚松柏. 连续爆轰发动机原理与技术[M]. 北京:科学出版社, 2018.