[1] Kailasanath K. Review of Propulsion Applications of Detonation Waves[J]. AIAA Journal, 2000, 38(9): 1698-1708.
[2] Wolanski P. Detonative Propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1): 125-158.
[3] Fievisohn R T, Yu K H. Steady-State Analysis of Rotating Detonation Engine Flowfields with the Method of Characteristics[J]. Journal of Propulsion and Power, 2017, 33(1): 89-99.
[4] Voitsekhovskii B V. Maintained Detonations[J]. Soviet Physics Doklady, 1960, 4: 1207-1207.
[5] Naples A, Hoke J, Schauer F. Experimental Investigation of a Rotating Detonation Engine Injector Temporal Response[C]. Kissimmee: 53rd AIAA Aerospace Sciences Meeting, 2015.
[6] Goto K K Y, Ishihara K. Experimental Study of Effects of Injector Configurations on Rotating Detonation Engine Performance[C]. Salt Lake City: 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016.
[7] Duvall J, Chacon F, Harvey C, et al. Study of the Effects of Various Injection Geometries on the Operation of a Rotating Detonation Engine[C]. Kissimmee: 2018 AIAA Aerospace Sciences Meeting, 2018.
[8] Lim D, Heister S, Stechmann D, et al. Transient Response of a Liquid Injector to a Steep-Fronted Transverse Pressure Wave[J]. Shock Waves, 2018, 28(4): 919-932.
[9] Anderson W, Lim D, Heister S D. Experimental Study of Liquid Injector Elements for Use in Rotating Detonation Engines[C]. Grapevine: 55th AIAA Aerospace Sciences Meeting, 2017.
[10] Nordeen C A, Schwer D, Schauer F, et al. Role of Inlet Reactant Mixedness on the Thermodynamic Performance of a Rotating Detonation Engine[J]. Shock Waves, 2015, 26(4): 1-12.
[11] Boulal S, Vidal P, Zitoun R. Experimental Investigation of Detonation Quenching in Non-Uniform Compositions[J]. Combustion and Flame, 2016, 172: 222-233.
[12] Anderson W S, Heister S D. Response of a Liquid Jet in a Multiple Detonation Driven Crossflow[J]. Journal of Propulsion and Power, 2019, 35(2): 303-312.
[13] Rankin B A, Richardson D R, Caswell A W, et al. Chemiluminescence Imaging of an Optically Accessible Non-premixed Rotating Detonation Engine[J]. Combustion and Flame, 2017, 176: 12-22.
[14] Driscoll R, Aghasi P, St George A, et al. Three-Dimensional, Numerical Investigation of Reactant Injection Variation in a H2/Air Rotating Detonation Engine[J]. International Journal of Hydrogen Energy, 2016, 41(9): 5162-5175.
[15] Gaillard T, Davidenko D, Dupoirieux F. Numerical Optimisation in Non-Reacting Conditions of the Injector Geometry for a Continuous Detonation Wave Rocket Engine[J]. Acta Astronautica, 2015, 111: 334-344.
[16] Gaillard T, Davidenko D, Dupoirieux F. Numerical Simulation of a Rotating Detonation with a Realistic Injector Designed for Separate Supply of Gaseous Hydrogen and Oxygen[J]. Acta Astronautica, 2017, 141: 64-78.
[17] Yao S, Han X, Liu Y, et al. Numerical Study of Rotating Detonation Engine with an Array of Injection Holes[J]. Shock Waves, 2017, 27(3): 467-476.
[18] Yao S, Tang X, Luan M, et al. Numerical Study of Hollow Rotating Detonation Engine with Different Fuel Injection Area Ratios[J]. Proceedings of the Combustion Institute, 2016, 36(2): 2649-2655.
[19] Schwer D A, Kailasanath K. Towards Non-Premixed Injection Modeling of Rotating Detonation Engines[C]. Orlando: 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015.
[20] Houim R W, Fievisohn R T. The Influence of Acoustic Impedance on Gaseous Layered Detonations Bounded by an Inert Gas[J]. Combustion and Flame, 2017, 179: 185-198.
[21] Mi X, Higgins A J, Ng H D, et al. Propagation of Gaseous Detonation Waves in a Spatially Inhomogeneous Reactive Medium[J]. Physical Review Fluids, 2017, 2(5).
[22] Chacon F, Gamba M. Development of an Optically Accessible Continuous Wave Rotating Detonation Engine[C]. Cincinnati: 2018 AIAA Aerospace Sciences Meeting, 2018.
[23] Chacon F, Gamba M. Shock Propagation Through a Stratified Gas[C]. Kissimmee: 2018 AIAA Aerospace Sciences Meeting, 2018.
[24] Burr J R, Yu K H. Blast Wave Propagation in Cross-Flow of Detonable Mixture[C]. Cleveland: 50th AIAA/ASME/ASE/ASEE Joint Propulsion Conference, 2014.
[25] Burr J R, Yu K H. Shock in Reactive Crossflow under Partial Confinement[C]. Leeds: 25th International Colloquium on the Dynamics of Explosions and Reactive Systems, 2015.
[26] Burr J R, Yu K H. Detonation Reignition within a Rotating Detonation Engine[C]. San Diego: 54th AIAA Aerospace Sciences Meeting, 2016.
[27] Fievisohn R T, Yu K H. Parametric Study of an Ethylene-Air Rotating Detonation Engine Using an Ideal Model[C]. San Diego: 54th AIAA Aerospace Sciences Meeting, 2016.
[28] Prakash S, Fiévet R, Raman V, et al. Correction: Numerical Study of the Detonation Wave Structure in a Linear Model Detonation Engine[C]. Cincinnati: 2018 Joint Propulsion Conference, 2018.
[29] Baurle R A, Girimaji S S. Assumed PDF Turbulence-Chemistry Closure with Temperature-Composition Correlations[J]. Combustion and Flame, 2003, 134: 131-148.
[30] Jachimowski C J. An Analytical Study of the Hydrogen-Air Reaction Mechanism with Application to Scramjet Combustion[R]. NASA TP-2791, 1988.
[31] Mouza A A, Patsa C M, Sch?nfeld F. Mixing Performance of a Chaotic Micro-Mixer[J]. Chemical Engineering Research and Design, 2008, 86(10): 1128-1134.