Performance Study of Chemical Acceleration Algorithm for Parallel Numerical Simulation of Oblique Detonation Wave
1.Key Laboratory of Transient Physics,Nanjing University of Science and Technology,Nanjing 210094,China;2.Beijing Institute of Astronautical System Engineering,Beijing 100076,China
JIANG Chang-lei1, DONG Gang1, WU Jin-tao2. Performance Study of Chemical Acceleration Algorithm for Parallel Numerical Simulation of Oblique Detonation Wave[J]. Journal of Propulsion Technology, 2021, 42(4): 765-775.
[1] Wolański P. Detonative Propulsion[J]. Proceedings of the Combustion Institute, 2013, 34: 125-158.
[2] 范宝春. 极度燃烧[M]. 北京: 国防工业出版社, 2018.
[3] Choi J Y, Kim D W, Jeung I S, et al. Cell-like Structure of Unstable Oblique Detonation Wave from High-Resolution Numerical Simulation[J]. Proceedings of the Combustion Institute, 2007, 31: 2473-2480.
[4] Teng H H, Jiang Z L, Ng H D. Numerical Study on Unstable Surfaces of Oblique Detonations[J]. Journal of Fluid Mechanics, 2014, 744: 111-128.
[5] Teng H, Ng H D, Li K, et al. Evolution of Cellular Structures on Oblique Detonation Surfaces[J]. Combustion and Flame, 2015, 162: 470-477.
[6] Teng H, Ng H D, Jiang Z. Initiation Characteristics of Wedge-Induced Oblique Detonation Waves in a Stoichiometric Hydrogen-Air Mixture[J]. Proceedings of the Combustion Institute, 2017, 36: 2735-2742.
[7] Fang Y, Zhang Y, Deng X, et al. Structure of Wedge-Induced Oblique Detonation in Acetylene-Oxygen-Argon Mixtures[J]. Physics of Fluids, 2019, 31(2).
[8] 陈 楠, Esfehani S A, Bhattrai S, 等. 当量比对斜爆轰波诱导区特性影响的数值模拟研究[J]. 推进技术, 2018, 39(12): 2798-2805.
[9] Pope S B. Computationally Efficient Implementation of Combustion Chemistry Using in Situ Adaptive Tabulation[J]. Combustion Theory and Modelling, 1997, 1(1): 41-63.
[10] Dong G, Fan B C, Chen Y L. Acceleration of Chemistry Computations in Two-Dimensional Detonation Induced by Shock Focusing Using Reduced ISAT[J]. Combustion Theory and Modeling, 2007, 11(5): 823-837.
[11] Dong G, Fan B C. Chemistry Acceleration Modeling of Detonation Based on the Dynamical Storage/Deletion Algorithm[J]. Combustion Science and Technology, 2009, 181(9): 1207-1216.
[12] Lu L, Lantz S R, Ren Z, et al. Computationally Efficient Implementation of Combustion Chemistry in Parallel PDF Calculations[J]. Journal of Computational Physics, 2009, 228(15): 5490-5525.
[13] Wu Jintao, Dong Gang, Li Baoming. Parallel Chemistry Acceleration Algorithms Based on ISAT Method in Gaseous Detonation Computations[J]. Computers and Fluids, 2018, 167: 256-284.
[14] Wu Jintao, Dong Gang, Li Yi. Parallel Chemistry Acceleration Algorithm with ISAT Table Size Control in the Application of Gaseous Detonation[J]. Shock Waves, 2019, 29: 523-535.
[15] Jiang G S, Shu C W. Efficient Implementation of Weighted ENO Schemes[J]. Journal of Computational Physics, 1995, 126(1): 202-228.
[16] Balsara D S, Shu C W. Monotonicity Preserving Weighted Essentially Non-Oscillatory Schemes with Increasingly High Order of Accuracy[J]. Journal of Computational Physics, 2000, 160(2): 405-452.
[17] Teng H, Zhang Y, Jiang Z. Numerical Investigation on the Induction Zone Structure of the Oblique Detonation Waves[J]. Computers and Fluids, 2014, 95(3): 127-131.
[18] Burke M P, Chaos M, Ju Y, et al. Comprehensive H2/O2 Kinetic Model for High-Pressure Combustion[J]. International Journal of Chemical Kinetics, 2012, 44(7): 444-474.
[19] Brown P N, Byrne G D, Hindmarsh A C. VODE: A Variable-Coefficient ODE Solver[J]. SIAM Journal on Scientific and Statistical Computing, 1989, 10(5): 1038-1051.
[20] 董 刚, 范宝春, 朱旻明, 等. 动态存储方法在气相爆轰波数值模拟中的应用[J]. 爆炸与冲击, 2008, 28(1).