CHEN Wei-qiang, LIU Yu, WANG Lan, XIAO Bao-guo. Numerical Study on Shock-Induced Combustion of a Blunt Projectile via an Adaptive Mesh Program[J]. Journal of Propulsion Technology, 2021, 42(4): 776-785.
[1] Wolanski P. Detonative Propulsion[J]. Proceedings of the Combustion Institute, 2013, 34: 125-158.
[2] 鲁 唯, 范 玮, 王 可, 等. 无阀式煤油脉冲爆震火箭发动机工作循环特性研究[J]. 推进技术, 2018, 39(5): 971-978.
[3] Lu W, Fan W, Wang K, et al. Operation of A Liquid-Fueled and Valveless Pulse Detonation Rocket Engine at High Frequency[J]. Proceedings of the Combustion Institute, 2017, 36 (2): 2657-2664.
[4] 夏镇娟, 张义宁, 马 虎, 等. 点火位置对圆盘结构下旋转爆震波起爆过程的影响[J]. 推进技术, 2020, DOI: 10.13675/j.cnki.tjjs.200123.
[5] Zhang H, Liu W, Liu S. Effects of Inner Cylinder Length on H2/Air Rotating Detonation[J]. International Journal of Hydrogen Energy, 2016, 41 (30): 13281-13293.
[6] Wang Y, Wang J, Li Y, et al. Induction for Multiple Rotating Detonation Waves in the Hydrogen-Oxygen Mixture with Tangential Flow[J]. International Journal of Hydrogen Energy, 2014, 39 (22): 11792-11797.
[7] 杨鹏飞, 牟乾辉, 滕宏辉, 等. 旋转爆轰波中多波流动模式的数值研究[J]. 推进技术, 2019, 40(2): 398-406.
[8] Teng H, Ng H D, Li K, et al. Evolution of Cellular Structures on Oblique Detonation Surfaces[J]. Combustion and Flame, 2015, 162 (2): 470-477.
[9] 韩 旭, 周 进, 林志勇, 等. 超声速预混气的热射流起爆过程数值模拟[J]. 推进技术, 2012, 33(4): 650-656.
[10] 滕宏辉, 姜宗林. 斜爆轰的多波结构及其稳定性研究进展[J]. 力学进展, 2020, 50(1).
[11] Teng H, Yang P, Zhang Y, et al. Flow and Combustion Mechanism of Oblique Detonation Engines[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50 (9).
[12] Deiterding R. Parallel Adaptive Simulation of Multi-Dimensional Detonation Structures[D]. Cottbus: Brandenburgischen Technischen Universit?t, 2003.
[13] Cai X, Deiterding R, Liang J, et al. Diffusion and Mixing Effects in Hot Jet Initiation and Propagation of Hydrogen Detonations[J]. Journal of Fluid Mechanics, 2018, 836: 324-351.
[14] Cai X, Liang J, Deiterding R, et al. Experimental and Numerical Investigations on Propagating Modes of Detonations: Detonation Wave/Boundary Layer Interaction[J]. Combustion and Flame, 2018, 190: 201-215.
[15] 陈伟强, 梁剑寒, 林志勇, 等. 超声速预混气扩张流道热射流起爆研究[J]. 推进技术, 2015, 36(12): 1761-1767.
[16] Liu Y, Wang L, Xiao B, et al. Hysteresis Phenomenon of the Oblique Detonation Wave[J]. Combustion and Flame, 2018, 192: 170-179.
[17] Eude Y, Davidenko D, Falempin F, et al. Use of the Adaptive Mesh Refinement for 3D Simulations of a CDWRE (Continuous Detonation Wave Rocket Engine)[R]. AIAA 2011-2236.
[18] Yuan X, Zhou Jin, Lin Z, et al. Numerical Study of Detonation Diffraction Through 90-Degree Curved Channels to Expansion Area[J]. International Journal of Hydrogen Energy, 2017, 42 (10): 7045-7059.
[19] Lehr H F. Experiments on Shock Induced Combustion[J]. Astronautica Acta, 1972, 17 (4): 589-597.
[20] 刘 瑜. 化学非平衡流的计算方法研究及其在激波诱导燃烧现象模拟中的应用[D]. 长沙: 国防科学技术大学, 2008.
[21] 刘世杰, 孙明波, 林志勇, 等. 钝头体激波诱导振荡燃烧现象的数值模拟[J]. 力学学报, 2010, 42(4): 1-10.
[22] Wilson G J, Sussman M A. Computation of Unsteady Shock-Induced Combustion Using Logarithmic Species Conservation Equations[J]. AIAA Journal, 1993, 31(2): 294-301.
[23] Hosangadi A, York B J, Sinha N, et al. Progress in Transient Interior Ballistic Flowfield Simulations Using Multi-Dimensional Upwind/Implicit Numerics[R]. AIAA 93-1915.
[24] Choi J Y, Jeung I S, Yoon Y. Computational Fluid Dynamics Algorithms for Unsteady Shock-Induced Combustion, Part I: Validation[J]. AIAA Journal, 2000, 38(7): 1179-1187.
[25] Yungster S, Radhakrishnan K. A Fully Implicit Time Accurate Method for Hypersonic Combustion: Application to Shock-Induced Combustion Instability[R]. AIAA 94-2965.
[26] Matsuo A, Fujii K, Fujiwara T. Flow Features of Shock-Induced Combustion Around Projectile Traveling at Hypervelocities[J]. AIAA Journal, 1995, 33(6): 1056-1063.
[27] Stull D R, Prophet H. JANAF Thermodynamic Tables [R]. NSRDS-NBS 37, 1971.
[28] Keromnes A, Metcalfe W K, Heufer K A, et al. An Experimental and Detailed Chemical Kinetic Modeling Study of Hydrogen and Syngas Mixture Oxidation at Elevated Pressures[J]. Combustion and Flame, 2013, 160: 995-1011.
[29] Smith G P, Tao Y, Wang H. Foundational Fuel Chemistry Model Version 1.0 (FFCM-1)[EB/OL]. http://web.stanford.edu/group/haiwanglab/FFCM-1/index.html,2016-07-15.
[30] Burke M P, Chaos M, Ju Y, et al. Comprehensive H2/O2 Kinetic Model for High-Pressure Combustion[J]. International Journal of Chemical Kinetics, 2012, 44(7): 445-474.
[31] Hashemi H, Christensen J M, Gersen S, et al. Hydrogen Oxidation at High Pressure and Intermediate Temperatures: Experiments and Kinetic Modeling[J]. Proceedings of the Combustion Institute, 2015, 35(1): 553-560.
[32] Berger M. Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations[R]. STAN-CS-82-924, 1982.
[33] Grossmann B, Cinnella P. Flux-Split Algorithms for Flows with Non-Equilibrium Chemistry and Vibrational Relaxation[J]. Journal of Computational Physics, 1990, 88: 131-168.
[34] Sanders R, Morano E, Druguet M C. Multidimensional Dissipation for Upwind Schemes: Stability and Applications to Gas Dynamics[J]. Journal of Computational Physics, 1998, 145: 511-537.
[35] Deiterding R. Numerical Simulation of Transient Detonation Structures in H2-O2 Mixtures in Smooth Pipe Bends[C]. Poitiers: 21st International Colloquium on the Dynamics of Explosions and Reactive Systems, 2007.
[36] Anderson W K, Thomas J L, Van Leer B. Comparison of Finite Volume Flux Vector Splittings for the Euler equations[J]. AIAA Journal, 1986, 24(9): 1453-1460.
[37] Fedkiw R P, Aslam T, Merriman B, et al. A Non-Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method)[J]. Journal of Computational Physics, 1999, 152: 457-492.