Numerical Study on Structural Evolution and Transitional Criteria of Oblique Detonation Waves in Confined Space
1.China State Key Laboratory of High-Temperature Gas Dynamics,Institute of Mechanics, Chinese Academy of Sciences,Beijing 100190,China;2.School of Engineering Science,University of Chinese Academy of Sciences,Beijing 100049,China
PENG Jun1,2, MA Jia-wen1,2, YANG Peng-fei1,2, HU Zong-min1,2. Numerical Study on Structural Evolution and Transitional Criteria of Oblique Detonation Waves in Confined Space[J]. Journal of Propulsion Technology, 2021, 42(4): 738-744.
[1] Lee J H S. The Detonation Phenomenon[M]. Cambridge: Cambridge University Press, 2008.
[2] Wolański P. Detonative Propulsion[J]. Proceedings of the Combustion Institute, 2013, 34: 125-158.
[3] Anand V, Gutmark E. Rotating Detonation Combustors and Their Similarities to Rocket Instabilities[J]. Progress in Energy and Combustion Science, 2019, 73: 182-234.
[4] 滕宏辉, 杨鹏飞, 张义宁, 等. 斜爆震发动机的流动与燃烧机理[J]. 中国科学: 物理学 力学 天文学, 2020, 50(9).
[5] Jiang Z, Li J, Hu Z, et al. On Theory and Methods for Advanced Detonation-Driven Hypervelocity Shock Tunnels[J]. National Science Review, 2020, (7): 1198-1207.
[6] 滕宏辉, 姜宗林. 斜爆轰的多波结构及其稳定性研究进展[J]. 力学进展, 2019, 50(20).
[7] 姜宗林. 气体爆轰物理及其统一框架理论[M]. 北京: 科学出版社, 2020.
[8] Gross R A. Oblique Detonation Waves[J]. AIAA Journal, 1963, 1(5).
[9] Pratt D T, Humphrey J W, Glenn D E. Morphology of Standing Oblique Detonation Waves[J]. Journal of Propulsion and Power, 1991, (7): 837-845.
[10] Li C, Kailasanath K, Oran E S. Detonation Structures behind Oblique Shocks[J]. Physics of Fluids, 1994, (6): 1600-1611.
[11] Viguier C, Silva L F F d, Desbordes D, et al. Onset of Oblique Detonation Waves: Comparison Between Experimental and Numerical Results for Hydrogen-Air Mixtures[J]. Symposium (International) on Combustion, 1996, 26: 3023-3031.
[12] Teng H H, Jiang Z L. On the Transition Pattern of the Oblique Detonation Structure[J]. Journal of Fluid Mechanics, 2012, 713: 659-669.
[13] Miao S, Zhou J, Liu S, et al. Formation Mechanisms and Characteristics of Transition Patterns in Oblique Detonations[J]. Acta Astronautica, 2018, 142: 121-129.
[14] Yang P, Teng H, Jiang Z, et al. Effects of Inflow Mach Number on Oblique Detonation Initiation with a Two-Step Induction-Reaction Kinetic Model[J]. Combustion and Flame, 2018, 193: 246-256.
[15] Choi J Y, Kim D W, Jeung I S, et al. Cell-Like Structure of Unstable Oblique Detonation Wave from High-Resolution Numerical Simulation[J]. Proceedings of the Combustion Institute, 2007, 31: 2473-2480.
[16] Teng H H, Jiang Z L, Ng H D. Numerical Study on Unstable Surfaces of Oblique Detonations[J]. Journal of Fluid Mechanics, 2014, 744: 111-128.
[17] Verreault J, Higgins A J, Stowe R A. Formation of Transverse Waves in Oblique Detonations[J]. Proceedings of the Combustion Institute, 2013, 34: 1913-1920.
[18] Iwata K, Nakaya S, Tsue M. Numerical Investigation of the Effects of Nonuniform Premixing on Shock-Induced Combustion[J]. AIAA Journal, 2016, 54: 1682-1692.
[19] Iwata K, Nakaya S, Tsue M. Wedge-Stabilized Oblique Detonation in an Inhomogeneous Hydrogen-Air Mixture[J]. Proceedings of the Combustion Institute, 2017, 36: 2761-2769.
[20] Fang Y, Hu Z, Teng H, et al. Numerical Study of Inflow Equivalence Ratio Inhomogeneity on Oblique Detonation Formation in Hydrogen-Air Mixtures[J]. Aerospace Science and Technology, 2017, 71: 256-263.
[21] Yang P, Ng H D, Teng H. Numerical Study of Wedge-Induced Oblique Detonations in Unsteady Flow[J]. Journal of Fluid Mechanics, 2019, 876: 264-287.
[22] Fang Y, Hu Z, Teng H. Numerical Investigation of Oblique Detonations Induced by a Finite Wedge in a Stoichiometric Hydrogen-Air Mixture[J]. Fuel, 2018, 234: 502-507.
[23] Choi J Y, Shin E J R, Jeung I S. Unstable Combustion Induced by Oblique Shock Waves at the Non-Attaching Condition of the Oblique Detonation wave[J]. Proceedings of the Combustion Institute, 2009, 32: 2387-2396.
[24] Liu Y, Han X, Yao S, et al. A Numerical Investigation of the Prompt Oblique Detonation Wave Sustained by a Finite-Length Wedge[J]. Shock Waves, 2016, 26: 729-739.
[25] Wang Kuanliang, Zhang Zijian, Yang Pengfei, et al. Numerical Study on Reflection of an Oblique Detonation Wave on an Outward Turning Wall[J]. Physics of Fluids, 2020, 32(4).
[26] Burke M P, Chaos M, Ju Y, et al. Comprehensive H2/O2 Kinetic Model for High-Pressure Combustion[J]. International Journal of Chemical Kinetics, 2012, 44: 444-474.
[27] McBride B J, Zehe M J, Gordon S. NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species[M]. Cleveland: National Aeronautics and Space Administration, 2002.
[28] Nagdewe S P, Shevare G R, Kim H D. Study on the Numerical Schemes for Hypersonic Flow Simulation[J]. Shock Waves, 2009, 19: 433-442.
[29] Zhang Z, Ma K, Zhang W, et al. Numerical Investigation of a Mach 9 Oblique Detonation Engine with Fuel Pre-injection[J]. Aerospace Science and Technology, 2020, 105(10).
[30] Peng J, Zhang Z, Hu Z, et al. A Theoretical and Computational Study of the Vibration Excitation on the Transition Criteria of Shock Wave Reflections[J]. Aerospace Science and Technology, 2019, 89: 299-306.
[31] Edney B E. Effects of Shock Impingement on the Heat Transfer around Blunt Bodies[J]. AIAA Journal, 1968, 6(1): 15-21.