Journal of Propulsion Technology ›› 2021, Vol. 42 ›› Issue (4): 721-737.DOI: 10.13675/j.cnki.tjjs.210109
• Review • Next Articles
Online:
2021-04-15
Published:
2021-04-15
王兵1,谢峤峰1,闻浩诚1,滕宏辉2,张义宁3,周林2,3
作者简介:
王 兵,博士,特聘研究员,研究领域为喷雾与燃烧推进。E-mail:wbing@mail.tsinghua.edu.cn
WANG Bing1, XIE Qiao-feng1, WEN Hao-cheng1, TENG Hong-hui2, ZHANG Yi-ning3, ZHOU Lin2,3. Research Progress of Detonation Engines[J]. Journal of Propulsion Technology, 2021, 42(4): 721-737.
王兵,谢峤峰,闻浩诚,滕宏辉,张义宁,周林. 爆震发动机研究进展[J]. 推进技术, 2021, 42(4): 721-737.
Add to citation manager EndNote|Ris|BibTeX
[1] Wang B, Wang J P. Introduction to the Special Section on Recent Progress on Rotating Detonation and Its Application[J]. AIAA Journal, 2020, 58(12): 4974-4975. [2] Wolański P. Detonative Propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1): 125-158. [3] Zhou R, Wu D, Wang J P. Progress of Continuously Rotating Detonation Engines[J]. Chinese Journal of Aeronautics, 2016, 29(1): 15-29. [4] Wang B. Recent Research Progress on Rotating Detonation and Its Application in Different Engines[C]. Beijing: 27th International Colloquium on the Dynamics of Explosions and Reactive Systems, 2019. [5] Xie Q F, Ji Z F, Wen H C, et al. Review on the Rotating Detonation Engine and Its Typical Problems[J]. Transactions on Aerospace Research, 2020, (261): 107-163. [6] Abel F A. Contributions to the History of Explosive Agents[J]. Philosophical Transactions of the Royal Society of London, 1869, 159: 489-516. [7] Berthelot M, Vieille P. L'oude Explosive[J]. Annual Review of Physical Chemistry, 1883, 28(5), 283-332. [8] Fickett W, Davis W C. Detonation: Theory and Experiment (Dover Books on Physics)[M]. New York: Dover Publications, 2000. [9] Campbell C, Woodhead D W. The Ignition of Gases by an Explosion-Wave, Part I: Carbon Monoxide and Hydrogen Mixtures[J]. Journal of the Chemical Society (Resumed), 1926, 129: 3010-3021. [10] Vasil’ev A A. Cell Size as the Main Geometric Parameter of a Multifront Detonation Wave [J]. Journal of Propulsion and Power, 2006, 22(6): 1245-1260. [11] Lee J H S, Radulescu M I. On the Hydrodynamic Thickness of Cellular Detonations[J]. Combustion, Explosion and Shock Waves, 2005, 41: 745-765. [12] Vasil'ev A A. Geometric Limits of Gas Detonation Propagation[J]. Combustion, Explosion and Shock Waves, 1982, 18: 245-249. [13] Vasil'ev A A, Mitrofanov V V, Topchiyan M E. Detonation Waves in Gases[J]. Combustion, Explosion and Shock Waves, 1987, 23: 605-623. [14] Kindracki J, Kobiera A, Wolański P, et al. Experimental and Numerical Study of the Rotating Detonation Engine in Hydrogen-Air Mixtures[J]. Progress in Propulsion Physics, 2011, 2: 555-582. [15] George A S, Driscoll R, Anand V, et al. On the Existence and Multiplicity of Rotating Detonations[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2691-2698. [16] Wen H C, Xie Q F, Wang B. Propagation Behaviors of Rotating Detonation in an Obround Combustor[J]. Combustion and Flame, 2019, 210: 389-398. [17] Urtiew P A, Oppenheim A K. Experimental Observations of the Transition to Detonation in an Explosive Gas[J]. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1966, 295: 13-28. [18] Zhang H L, Liu W D, Liu S J. Effects of Inner Cylinder Length on H2/Air Rotating Detonation[J]. International Journal of Hydrogen Energy, 2016, 41(30). [19] Fotia M L, Hoke J, Schauer F. Study of the Ignition Process in a Laboratory Scale Rotating Detonation Engine[J]. Experimental Thermal and Fluid Science, 2018, 94: 345-354. [20] Voitsekhovskii B V. Maintained Detonations[J]. Doklady Akademi Nauk SSSR, 1959, 129: 1254-1256. [21] Nicholls J A, Cullen R E, Ragland K W. Feasibility Studies of a Rotating Detonation Wave Rocket Motor[J]. Journal of Spacecraft and Rockets, 1966, 3(6): 893-898. [22] Bykovskii F A, Klopotov I D, Mitrofanov V V. Spin Detonation of Gases in a Cylindrical Chamber[J]. Doklady Akademi Nauk USSR, 1975, 224: 1038-1041. [23] Edwards B D. Maintained Detonation Waves in an Annular Channel: A Hypothesis which Provides the Link Between Classical Acoustic Combustion Instability and Detonation Waves[J]. Symposium (International) on Combustion, 1977, 16(1): 1611-1618. [24] Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous Spin Detonation in Annular Combustors[J]. Combustion, Explosion and Shock Waves, 2005, 41: 449-459. [25] Hishida M, Fujiwara T, Wolański P. Fundamentals of Rotating Detonations[J]. Shock Waves, 2009, 19(1): 1-10. [26] Kasahara J, Kato Y, Ishihara K, et al. Application of Detonation Waves to Rocket Engine Chamber[M]. Cham: Springer International Publishing, 2018. [27] Wolański P, Kalina P, Balicki W, et al. Development of Gasturbine with Detonation Chamber[M]. Cham: Springer International Publishing, 2018. [28] Liu S J, Liu W D, Wang Y, et al. Free Jet Test of Continuous Rotating Detonation Ramjet Engine[C]. Xiamen: 21st AIAA International Space Planes and Hypersonics Technologies Conference, 2017. [29] Dunlap R, Brehm R L, Nicholls J A. A Preliminary Study of the Application of Steady-State Detonative Combustion to a Reaction Engine[J]. Journal of Jet Propulsion, 1958, 28(7): 451-456. [30] Pratt D T, Humphrey J W, Glenn D E. Morphology of Standing Oblique Detonation Waves[J]. Journal of Propulsion and Power, 1991, 7(5): 1225-1227. [31] 计自飞, 张会强, 谢峤峰, 等. 连续旋转爆震涡轮发动机热力过程与性能分析[J]. 清华大学学报:自然科学版, 2018, 58(10): 899-905. [32] Ji Z F, Zhang H Q, Wang B. Performance Analysis of Dual-duct Rotating Detonation Aero-Turbine Engine[J]. Aerospace Science and Technology, 2019, 92: 806-819. [33] Ji Z F, Zhang H Q, Wang B, et al. Comprehensive Performance Analysis of the Turbofan with a Multi-Annular Rotating Detonation Duct Burner[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(2). [34] Ji Z F, Duan R Z, Zhang R S, et al. Comprehensive Performance Analysis for the Rotating Detonation-Based Turboshaft Engine[J]. International Journal of Aerospace Engineering, 2020, DOI:10.1155/2020/9587813. [35] Ji Z F, Wang B, Zhang H Q, et al. Performance Analysis of the Continuous Rotating Detonation Aero-Turbine Engine[C]. Manchester: 23rd International Symposium on Air Breathing Engines, 2017. [36] Sousa J, Paniagua G, Morata E C. Thermodynamic Analysis of a Gas Turbine Engine with a Rotating Detonation Combustor[J]. Applied Energy, 2017, 195: 247-256. [37] Sichel M, Foster J C. The Ground Impulse Generated by a Plane Fuel-Air Explosion with Side Relief[J]. Acta Astronautica, 1979, 6(3-4): 243-256. [38] Zhou S B, Ma H, Li S, et al. Effects of a Turbine Guide Vane on Hydrogen-Air Rotating Detonation Wave Propagation Characteristics[J]. International Journal of Hydrogen Energy, 2017, 42: 20297-20305. [39] Zhou S B, Ma H, Liu D K, et al. Experimental Study of a Hydrogen-Air Rotating Detonation Combustor[J]. International Journal of Hydrogen Energy, 2017, 42: 14741-14749. [40] Wolański P. Application of the Continuous Rotating Detonation to Gas Turbine[J]. Applied Mechanics and Materials, 2015, 782: 3-12. [41] Naples A, Hoke J, Battelle R, et al. Rotating Detonation Engine Implementation into an Open-Loop T63 Gas Turbine Engine[C]. Texas: 55th AIAA Aerospace Sciences Meeting, 2017. [42] Ji Z F. Comprehensive Performance Analysis of the Continuous Rotating Detonation Based Airbreathing Propulsion Systems[D]. Beijing: Tsinghua University, 2019. [43] Schwer D A, Kailasanath K. Feedback into Mixture Plenums in Rotating Detonation Engines[C]. Tennessee: 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2012. [44] Schwer D A, Kailasanath K. On Reducing Feedback Pressure in Rotating Detonation Engines[C]. Texas: 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2013. [45] Anand V, George St A, Driscoll R, et al. Analysis of Air Inlet and Fuel Plenum Behavior in a Rotating Detonation Combustor[J]. Experimental Thermal and Fluid Science, 2016, 70: 408-416. [46] Liu Z, Braun J, Paniagua G. Three Dimensional Optimization for Subsonic Axial Turbines Operating at High Unsteady Inlet Mach number[C]. Ohio: 2018 Joint Propulsion Conference, 2018. [47] Liu Z, Braun J, Paniagua G. Characterization of a Supersonic Turbine Downstream of a Rotating Detonation Combustor[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(3). [48] Zhdan S A. Mathematical Model of Continuous Detonation in an Annular Combustor with a Supersonic Flow Velocity[J]. Combustion, Explosion, and Shock Waves, 2008, 44: 690-697. [49] Fievisohn R T, Yu K H. Steady-State Analysis of Rotating Detonation Engine Flowfields with the Method of Characteristics[J]. Journal of Propulsion and Power, 2016, 36, 89-99. [50] Braun E M, Lu F K, Wilson D R, et al. Airbreathing Rotating Detonation Wave Engine Cycle Analysis[J]. Aerospace Science and Technology, 2013, 27(1): 201-208. [51] Heiser W H, Pratt D T, Daley D H, et al. Hypersonic Airbreathing Propulsion[M]. Washington D C: American Institute of Aeronautics and Astronautics, Inc., 1994. [52] 张任帅, 计自飞, 王 兵, 等. 基于旋转爆震的火箭基组合循环发动机总体性能分析[C]. 北京:清华大学航天航空学院博士生论坛, 2019. [53] 杨鹏飞, 牟乾辉, 滕宏辉, 等. 旋转爆轰波中多波流动模式的数值研究[J]. 推进技术, 2019, 40(2): 398-406. [54] Teng H H, Zhou L, Yang P F, et al. Numerical Investigation of Wavelet Features in Rotating Detonations with a Two-Step Induction-Reaction Model[J]. International Journal of Hydrogen Energy, 2020, 45: 4991-5001. [55] Schwer D A, Kailasanath K. Numerical Study of the Effects of Engine Size on Rotating Detonation Engines[C]. Florida: 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2011. [56] Zhao M J, Cleary M J, Zhang H W. Combustion Mode and Wave Multiplicity in Rotating Detonative Combustion with Separate Reactant Injection[J]. Combustion and Flame, 2021, 225: 291-304. [57] Wang Y W, Sislian J P. Numerical Investigation of Methane and Air Mixing in a Shcramjet Inlet[C]. Ohio: 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2008. [58] Morrison R B. Oblique Detonation Wave Ramjet[R]. NASA CR-159192, 1980. [59] Ashford S A, Emanuel G. Oblique Detonation Wave Engine Performance Prediction[J]. Journal of Propulsion and Power, 1996, 12(2): 322-327. [60] Dudebout R, Sislian J P, Oppitz R. Numerical Simulation of Hypersonic Shock-Induced Combustion Ramjets[J]. Journal of Propulsion and Power, 1998, 14(6): 869-879. [61] 袁生学, 黄志澄. 高超声速发动机不同燃烧模式的性能比较——斜爆轰发动机性能评价[J]. 空气动力学学报, 1995, 13(1): 48-56. [62] Sislian J P, Dudebout R, Schumacher J, et al. Incomplete Mixing and Off-Design Effects on Shock-Induced Combustion Ramjet Performance[J]. Journal of Propulsion and Power, 2000, 16(1): 41-48. [63] Chan J, Sislian J P, Alexander D. Numerically Simulated Comparative Performance of a Scramjet and Shcramjet at Mach 11[J]. Journal of Propulsion and Power, 2010, 26(5): 1125-1134. [64] Wang T, Zhang Y N, Teng H H. Numerical Study on Initiation of Oblique Detonations in Hydrogen-Air Mixtures with Various Equivalence Ratios[J]. Aerospace Science and Technology, 2016, 49: 130-134. [65] Zhang Y, Yang P, Teng H, et al. Transition Between Different Initiation Structures of Wedge-Induced Oblique Detonations[J]. AIAA Journal, 2018, 56: 4016-4023. [66] Zhang Y, Zhou L, Gong J, et al. Effects of Activation Energy on the Instability of Oblique Detonation Surfaces with a One-Step Chemistry Model[J]. Physics of Fluids, 2018, 30(10). [67] Zhang Y N, Pan H, Jia B Y, et al. Experimental Investigation on Initiation of Oblique Detonation Waves[C]. Xiamen: 21st AIAA International Space Planes and Hypersonics Systems and Technology Conference, 2017. [68] Ren Z X, Wang B. Numerical Study on Stabilization of Wedge-Induced Oblique Detonation Waves in Premixing Kerosene-Air Mixtures[J]. Aerospace Science and Technology, 2020, 107(10). [69] Ren Z X, Wang B, Xiang G M, et al. Numerical Analysis of Wedge-Induced Oblique Detonations in Two-Phase Kerosene-Air Mixtures[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3627-3635. [70] Ren Z X, Wang B, Xiang G M, et al. Effect of the Multiphase Composition in a Premixed Fuel-Air Stream on Wedge-Induced Oblique Detonation Stabilisation[J]. Journal of Fluid Mechanics, 2018, 846: 411-427. [71] Liu Y, Wu D, Wang J P. Analytical and Numerical Investigations of Wedge-Induced Oblique Detonation Waves at Low Inflow Mach Number[J]. Combustion Science and Technology, 2015, 187(6): 843-856. [72] Liu Y, Han X D, Yao S B, et al. A Numerical Investigation of the Prompt Oblique Detonation Wave Sustained by a Finite-Length Wedge[J]. Shock Waves, 2016, 26: 729-739. [73] Liu Y, Liu Y S, Wu D, et al. Structure of an Oblique Detonation Wave Induced by a Wedge [J]. Shock Waves 2016, 26:161-168. [74] 林志勇. 高静温超声速预混气爆震起爆与发展过程机理研究[D]. 长沙: 国防科学技术大学, 2008. [75] 林志勇, 周 进, 张继业, 等. 预混超声速气流斜激波诱导脱体爆震研究[J]. 航空动力学报, 2009, 24(1): 50-54. [76] Miao S K, Zhou J, Lin Z Y, et al. Numerical Study on Thermodynamic Efficiency and Stability of Oblique Detonation Waves[J]. AIAA Journal, 2018, 56(8): 3112-3122. [77] Yu M Y, Miao S K. Initiation Characteristics of Wedge-Induced Oblique Detonation Waves in Turbulence Flows[J]. Acta Astronautica, 2018, 147: 195-204. [78] 蔡晓东. 超声速气流中的爆震过程研究[D]. 长沙: 国防科学技术大学, 2016. [79] Cai X, Deiterding R, Liang J, et al. Diffusion and Mixing Effects in Hot Jet Initiation and Propagation of Hydrogen Detonations[J]. Journal of Fluid Mechanics, 2017, (28): 324-351. [80] Chen W, Liang J, Cai X, et al. Three-Dimensional Simulations of Detonation Propagation in Circular Tubes Effects of Jet Initiation and Wall Reflection[J]. Physics of Fluids, 2020, 32(4). [81] 张子健. 斜爆轰推进理论、技术及其实验验证[D]. 北京: 中国科学院大学, 2020. [82] 马凯夫, 张子健, 刘云峰, 等. 斜爆轰发动机流动机理分析[J]. 气体物理, 2019, 4(3): 1-10. [83] Zhang Z, Ma K, Zhang W, et al. Numerical Investigation of a Mach 9 Oblique Detonation Engine with Fuel Pre-Injection[J]. Aerospace Science and Technology, 2020, 105(10). [84] 张子健, 韩 信, 马凯夫, 等. 斜爆轰发动机燃烧机理试验研究[J]. 推进技术, 2021, DOI:10.13675/j.cnki.tjjs.200828. [85] 董 刚, 范宝春, 李鸿志. 圆锥激波诱导的爆燃和爆轰不稳定性研究[J]. 兵工学报, 2010, 31(4):401-408. [86] Gui M Y, Fan B C, Dong G. Periodic Oscillation and Fine Structure of Wedge-Induced Oblique Detonation Waves[J]. Acta Mechanica Sinica, 2011, 27(6): 922-928. [87] Gui M Y, Fan B C. Wavelet Structure of Wedge-Induced Oblique Detonation Waves[J]. Combustion Science and Technology, 2012,184:1456-1470. [88] Yang P, Ng H D, Teng H. Numerical Study of Wedge-Induced Oblique Detonations in Unsteady Flow[J]. Journal of Fluid Mechanics, 2019, 876: 264-287. [89] Yang P, Ng H D, Teng H. Unsteady Dynamics of Wedge-Induced Oblique Detonations under Periodic Inflows[J]. Physics of Fluids, 2021, 33(1). [90] Teng H H, Tian C, Zhang Y N, et al. Morphology of Oblique Detonation Waves in a Stoichiometric Hydrogen-Air Mixture[J]. Journal of Fluid Mechanics, 2021, 913(A1). [91] Bian J, Zhou L, Teng H. Structural and Thermal Analysis on Oblique Detonation Influenced by Different Forebody Compressions in Hydrogen-Air Mixtures[J]. Fuel, 2021, 286(2). [92] Wang K, Zhang Z, Yang P, et al. Numerical Study on Reflection of an Oblique Detonation Wave on an Outward Turning Wall[J]. Physics of Fluids, 2020, 32(4). [93] Wang K, Teng H, Yang P, et al. Numerical Investigation of Flow Structures Resulting from the Interaction Between an Oblique Detonation Wave and an Upper Expansion Corner[J]. Journal of Fluid Mechanics, 2020, 903(A28). |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
General Visit:
Visit Today:
Currently Online: