Journal of Propulsion Technology ›› 2012, Vol. 33 ›› Issue (1): 78-83.

• Control ,Measurement and Fault Diagnosis • Previous Articles     Next Articles

Design of an Active Disturbance Rejection Decoupling Multivariable Control Scheme for Aero-Engine

  

  1. College of Energy and Power,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;College of Energy and Power,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;College of Energy and Power,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;College of Energy and Power,Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Published:2021-08-15

一种航空发动机多变量自抗扰解耦控制律设计

张海波,王健康,王日先,孙健国   

  1. 南京航空航天大学 能源与动力学院, 江苏 南京 210016;南京航空航天大学 能源与动力学院, 江苏 南京 210016;南京航空航天大学 能源与动力学院, 江苏 南京 210016;南京航空航天大学 能源与动力学院, 江苏 南京 210016
  • 作者简介:张海波(1976—),男,博士后,副教授,研究领域为航空发动机控制。E-mail:zh_zhhb@163.com
  • 基金资助:
    航空科学基金项目(2010ZB52011);南京航空航天大学基本科研业务费专项科研项目( Ns2010055)。

Abstract: The way to design multivariable decoupling control scheme for aero-engine is mainly discussed. A new active disturbance rejection decoupling multivariable control algorithm is proposed based on the basic Active Disturbance Rejection Control (ADRC) principle. Firstly, a necessary static decoupling process is carried out to diminish static coupling among the controlled loops, and then the dynamic decoupling is realized to compensate each other by the nonlinear Extended System Observer(ESO). Then, an ADRC decoupling controller for turbofan engines is implemented and designed.It is compared with ALQR controller in full flight envelope through nonlinear simulation tests. Simulation results show clearly that the decoupling controller ADRC has good dynamic tracking performance and decoupling properties.

Key words: Aero-engine; Active Disturbance Rejection Control(ADRC); Decoupling control; Robustness

摘要: 研究了航空发动机多变量解耦控制律设计问题。提出了一种用于航空发动机多回路控制的多变量自抗扰解耦控制算法:首先通过静态解耦算法实现多变量耦合系统的静态解耦,而后通过ADRC非线性扩张观测器的补偿控制实现各回路的动态解耦,最终实现复杂多变量耦合系统的解耦控制。以某涡扇发动机非线性部件级实时数学模型为被控对象,基于上述多变量自抗扰解耦控制算法设计了发动机中间状态以上多变量控制律。在全包线内,与基于增广LQR控制方法设计发动机闭环系统,进行了对比研究。数字仿真结果表明,前者使得发动机闭环系统具有更好的指令跟踪和多回路解耦能力。

关键词: 航空发动机;自抗扰控制;解耦控制;鲁棒性