Numerical Simulation of Fluid Transients by Chebyshev Super Spectral Viscosity Method for Propellant Lines
Xi’an Institute of Aerospace Propulsion,Xi’an 710100, China;Xi’an Institute of Aerospace Propulsion,Xi’an 710100, China;Xi’an Institute of Aerospace Propulsion,Xi’an 710100, China;Xi’an Institute of Aerospace Propulsion,Xi’an 710100, China
[2] Sagnick Hagen-D,Krfill Gerd.Numerical Simulation of Transients in Feed Systems for Cryogenic Rocket Engines[R].AIAA 95-2967. [3] 王珏.YF-73氢氧发动机起动过程分析[D].北京:航天工业总公司第十一研究所,1990. [4] 张育林, 刘昆, 程谋森.液体火箭发动机动力学理论与应用[M].北京:科学出版社, 2005. [5] Kolcio K,Helmicki A J,Jaweed S.Propulsion System Modeling for Condition Monitoring and Control:Part Ⅰ’Theoretical Foundation [R].AIAA 94-3227. [6] Kolcio K.Helmicki A J, Jaweed S.Propulsion System Modeling for Condition Monitoring and Control:Part Ⅱ’ Application to the SSME [R].AIAA 94-3228. [7] 刘昆, 张育林.一维可压缩流的有限元状态空间模型[J].推进技术, 9,0(5):62-66.(LIU Kun,ZHANG Yu-lin.Finite Elements State-Space Model for One-Dimensional Compressible Fluid Flow[J].Journal of Propulsion Technology,9,0(5):62-66.) [8] Canuto C, Quarteroni A.Approximation results for orthogonal polynomials in Sobolev spaces [J].Math Compu, 2,8:67-86. [9] Guo B Y.Spectral Methods and Their Applications [M].Singapore:World Scientific,1998. [10] Ma H P, Chebyschev-Legendre Super Spectral Viscosity Method for Nonlinear Conservation Laws [J].SIAM J.Numer.Anal., 8,5(3):893-908. [11] Ma H P,LI H Y.Super Spectral Viscosity Method for Nonlinear Conservation Laws [J].Journal of Shanghai University(English Edition), 6,0(1):9-14. [12] Sarra Scott A.Chebyshev Super Spectral Viscosity method for a Bed Model [J].J.Compu.Phys., 3,6(2). [13] 刘昆, 张育林.推进剂供应管道的集中参数近似模型研究——模态近似模型[J].推进技术, 8,9(4).(LIU Kun,ZHANG Yu-lin.Study on Lumped Parameter Approximation Models of Distributed Propellant Feedlines——Modal Approximation Models[J].Journal of Propulsion Technology,8,9(4).)