Journal of Propulsion Technology ›› 2014, Vol. 35 ›› Issue (5): 641-647.

• Ship Propulsion • Previous Articles     Next Articles

Effects of Total Pressure Distortion on Stator End-Wall Flow Structure of a Transonic Compressor

  

  1. Marine Engineering College,Dalian Maritime University,Dalian 116026,China;Marine Engineering College,Dalian Maritime University,Dalian 116026,China;Marine Engineering College,Dalian Maritime University,Dalian 116026,China
  • Published:2021-08-15

总压畸变对跨声速压气机静叶端区流场结构影响研究

高海洋,孙 鹏,钟兢军   

  1. 大连海事大学 轮机工程学院,辽宁 大连 116026;大连海事大学 轮机工程学院,辽宁 大连 116026;大连海事大学 轮机工程学院,辽宁 大连 116026
  • 作者简介:高海洋(1985—),男,博士生,研究领域为发动机气动热力学。E-mail :gaohydlmu@163.com
  • 基金资助:
    国家自然科学基金青年基金资助项目(51006014);中央高校基本科研业务费专项资金资助。

Abstract: In order to study the effects of total pressure distortion on the stator flow field and analyze the factors that influence the stator flow stability,unsteady numerical simulation was carried out to study a transonic compressor stator flow field with two different distorted inlets. Flow parameters near hub and casing and development of corner separation in different passages were analyzed in detail. The effects of distortion depth on stator flow structure were discussed. Study shows that corner separation is induced by distorted flow near end walls in stator. Flow structure in each passage is different due to the relative position to the distorted region. Stator loss caused by 38.2% distorted inlet is higher than that caused by 27.2% distorted inlet. The stator flow structure,with 38.2% distorted inlet,is more complex. The turbulence stability region and space vortex ring exist. The main reason of corner separation in stator is that the incidence angle increases because low energy fluid changes inlet velocity angle.

Key words: Total pressure distortion;Numerical simulation;Compressor;Stator;Corner separation

摘要: 为了进一步研究总压畸变对静叶流场结构的影响,分析影响静叶流动稳定性的因素,采用全流道非定常数值模拟方法,对两种畸变条件下的跨声速压气机流场进行求解,重点分析静叶根部和顶部附近流场参数变化情况,角区分离在各静叶流道内的发展过程,以及畸变深度对静叶流场结构的影响。研究表明,进口总压畸变引起静叶端壁角区分离,其流场结构因静叶流道相对畸变区位置不同而不同。38.2%深度畸变造成的静叶损失高于27.2%深度畸变,并且流道内流动更复杂,存在“扰动稳定区”并且有空间旋涡环生成。静叶角区分离的主要原因是畸变流体改变了进口气流角,从而使进口冲角周向分布不均匀。

关键词: 总压畸变;数值模拟;压气机;静叶;角区分离