Department of Thermal Science and Energy Engineering, University of Science and Technology of China,Hefei 230027, China;Department of Thermal Science and Energy Engineering, University of Science and Technology of China,Hefei 230027, China;Department of Thermal Science and Energy Engineering, University of Science and Technology of China,Hefei 230027, China;Department of Thermal Science and Energy Engineering, University of Science and Technology of China,Hefei 230027, China
[1] Cabra R, Chen J Y, Dibble R W, et al. Lifted Methane–air Jet Flames in a Vitiated Coflow[J]. Combustion and Flame , 2005, 143(4): 491-506. [2] Christo F C, Dally B B. Modeling Turbulent Reacting Jets Issuing into a Hot and Diluted Coflow[J]. Combustion and flame , 2005, 142(1): 117-129. [3] Ihme M, See Y C. LES Flamelet Modeling of a Three-Stream MILD Combustor: Analysis of Flame Sensitivity to Scalar Inflow Conditions[J]. Proceedings of the Combustion Institute , 2011, 33(1): 1309-1317. [4] Bilger R W, Pope S B, Bray K N C, et al. Paradigms in Turbulent Combustion Research[J]. Proceedings of the Combustion Institute , 2005, 30(1): 21-42. [5] Pitsch H. Large-Eddy Simulation of Turbulent Combustion[J]. Annual Review of Fluid Mech anics, 2006, 38: 453-482. [6] Pierce C D, Moin P. A Dynamic Model for Subgrid-Scale Variance and Dissipation Rate of a Conserved Scalar[J]. Physics of Fluids , 1998, 10. [7] Pitsch H, Steiner H. Large-Eddy Simulation of a Turbulent Piloted Methane/Air Diffusion Flame (Sandia Flame D)[J]. Physics of Fluids , 2000, 12. [8] Jha P K, Groth C P T. Tabulated Chemistry Approaches for Laminar Flames: Evaluation of Flame-Prolongation of ILDM and Flamelet Methods[J]. Combustion Theory and Modelling , 2012, 16(1): 31-57. [9] Verhoeven L M, Ramaekers W J S, Van Oijen J A, et al. Modeling Non-Premixed Laminar Co-Flow Flames Using Flamelet-Generated Manifolds[J]. Combustion and Flame , 2012, 159(1): 230-241. [10] Domingo P, Vervisch L, Veynante D. Large-Eddy Simulation of a Lifted Methane Jet Flame in a Vitiated Coflow[J]. Combustion and Flame , 2008, 152(3): 415-432. [11] Yoo C S, Sankaran R, Chen J H. Three-Dimensional Direct Numerical Simulation of a Turbulent Lifted Hydrogen Jet Flame in Heated Coflow: Flame Stabilization and Structure[J]. Journal of Fluid Mechanics , 2009, 640(1): 453-481. [12] Gordon R L, Masri A R, Pope S B, et al. Transport Budgets in Turbulent Lifted Flames of Methane Autoigniting in a Vitiated co-Flow[J]. Combustion and Flame , 2007, 151(3): 495-511. [13] Duwig C, Fuchs L. Large Eddy Simulation of a H 2 /N 2 Lifted Flame in a Vitiated Co-Flow[J]. Combustion Science and Technology , 2008, 180(3): 453-480. [14] Michel J B, Colin O, Angelberger C, et al. Using the Tabulated Diffusion Flamelet Model ADF-PCM to Simulate a Lifted Methane-Air Jet Flame[J]. Combustion and Flame , 2009, 156(7): 1318-1331. [15] Peters N. Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion[J]. Progress in Energy and Combustion Science , 1984, 10(3): 319-339. [16] Ihme M, See Y C. Prediction of Autoignition in a Lifted Methane/Air Flame Using an Unsteady Flamelet/Progress Variable Model[J]. Combustion and Flame , 2010, 157(10): 1850-1862. [17] Ihme M, Pitsch H. Prediction of Extinction and Rignition in Nonpremixed Turbulent Flames Using a Flamelet/Progress Variable Model: 1. A Priori Study and Presumed PDF Closure[J]. Combustion and Flame , 2008, 155(1): 70-89. [18] Poinsot T, Veynante D, Theoretical and Numerical Combustion, [M] Philadelphia : Edwards , 2001. [19] Galpin J, Angelberger C, Naudin A, et al. Large-Eddy Simulation of H 2 –Air Auto-Ignition Using Tabulated Detailed Chemistry[J]. Journal of Turbulence , 2008 (9).1-21. [20] Ihme M, Pitsch H. Prediction of Extinction and Reignition in Nonpremixed Turbulent Flames Using a Flamelet/Progress Variable Model: 2. Application in LES of Sandia Flames D and E[J]. Combustion and Flame , 2008, 155(1): 90-107. [21] Jeong J, Hussain F. On the Identification of a Vortex[J]. Journal of Fluid Mechanics , 1995, 285(69): 69-94.