Effects of Partly Covered Shape on an Isothermal and Exothermic Cavity Flowfield
Science and Technology on Scramjet Laboratory,National University of Defence Technology, Changsha 410073,China;Science and Technology on Scramjet Laboratory,National University of Defence Technology, Changsha 410073,China;Science and Technology on Scramjet Laboratory,National University of Defence Technology, Changsha 410073,China
BAO Heng,ZHOU Jin,PAN Yu. Effects of Partly Covered Shape on an Isothermal and Exothermic Cavity Flowfield[J]. Journal of Propulsion Technology, 2014, 35(5): 661-667.
[1] Ben-Yakar A, Hanson R K. Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets:An Overview [J]. Journal of Propulsion and Power , 2001, 4(17): 869-877. [2] Rasmussen C C, Driscoll J F, Hsu K-Y, et al. Stability Limits of Cavity-Stabilized Flames in Supersonic Flow [J]. Proceedings of the Combustion Institute , 2005,(30): 2825-2833. [3] Owens M G, Tehranian S, Segal C. Flame-Holding Configurations for Kerosene Combustion in a Mach 1. 8 Air Flow [J]. Journal of Propulsion and Power , 1998, 14 (4): 714-718. [4] Situ M, W C, P L H. Hot Gas Piloted Energy for Supersonic Combustion of Kerosene with Dual-Cavity [R]. AIAA 2001-0523. [5] Schetz J A, Cannon S C, Baranovsky S. Ignition of Liquid Fuel Jets in a Supersonic Airstream[R]. AIAA 79-1238. [6] Rasmussen C C, Driscoll J F, Hsub K-Y. Stability Limits of Cavity-Stabilized Flames in Supersonic Flow[J]. Proceedings of the Combustion Institute , 2005, 30(29): 875-881. [7] Kumaran K, Babu V. Mixing and Combustion Characteristics of Kerosene in a Model Supersonic Combustor[J]. Journal of Propulsion and Power , 2009, 25 (3):21-25. [8] Yua G, Lia J G, Zhao J R. An Experimental Study of Kerosene Combustion in a Supersonic Model Combustor Using Effervescent Atomization[J]. Proceedings of the Combustion Institute , 2005, 7(30): 43-47. [9] 刘敬华, 路艳红. 碳氢燃料双模态超声速燃烧的点火稳定分析 [J]. 飞航导弹, 2000, (3):55-58. [10] Vyacheslav A Vinogradov, Kobigsky S A, Petrov M D. Experimental Investigation of Kerosene Fuel Combustion in Supersonic Flow[J]. Journal of Propulsion and Power , 1995, 11(1):47-52. [11] 宋文艳, 刘伟雄, 贺 伟. 超声速燃烧室等离子体点火实验研究[J]. 实验流体力学, 2006, 20 (4): 20-24. [12] 丁 猛, 余 勇, 梁剑寒. 碳氢燃料超燃冲压发动机点火技术试验[J]. 推进技术, 2004, 25 (6): 566-569. (DING Meng, YU Yong, LIANG Jian-han, et al. Experimental Investigation of Ignition Technology in Liquid Hydrocarbon Fueled Scramjet Combustor[J]. Journal of Propulsion Technology , 2004, 25 (6): 566-569. ) [13] Takahashi S, Yamano G, Wakai K. Self-Ignition and Transition to Flame-Holding in a Rectangular Scramjet Combustor with a Backward Step[J]. Proceedings of the Combustion Institute , 2000, 12 (28): 706-712. [14] Kuo-Cheng Lin, Chung-Jen Tam, Kevin Jackson. Study on the Operability of Cavity Flameholders inside a Scramjet Combustor [R]. AIAA 2009-5028. [15] Kan Kobayashi, Sadatake Tomioka, Tohru Mitani. Ignition by an H 2 /O 2 -Microburner in a Supersonic Airflow[R]. AIAA 2001-1763. [16] Yua G, Lia J G, Zhao J R, et al. An Experimental Study of Kerosene Combustion in a Supersonic Model Combustor Using Effervescent Atomization[J]. Proceedings of the Combustion Institute , 2005, 12(30):417-421. [17] Eremeev A C, Grishin V G, Nikitenko L K, et al. Enhanced Ignition and Mixing of Kerosene Fuel in High-Speed Air Streams [R]. AIAA 2005-614. [18] Syed Ahmed Syed, Klaus A Hoffmann. Detached Eddy Simulation of Turbulent Flow over a Partially Open Cavity[R]. AIAA 2010-5072. [19] Shoeb Ahmed Syed, Klaus A Hoffmann. Numerical Investigation of 3-D Open Cavity with & without Cover Plates[R]. AIAA 2009-551. [20] Wittich D J, Eric J Jumper. Velocity of Large-Scale, Cavity Shear Layer Structures Through Time-Resolved Schlieren Images[R]. AIAA 2011-3263. [21] Wittich D J, Eric J Jumper. Pressure Oscillations Resulting from Subsonic Flow over a Partially Covered Cavity[R]. AIAA 2010-4497. [22] ünalmis ? H, Clemens N T , Dolling D S . Cavity Oscillation Mechanisms in High-Speed Flows[J]. AIAA Journal , 2004, 42 (10):2035-2041. [23] Rasmussen C C, Driscoll J F. Blowout Limits of Flames in High-Speed Airflows: Critical Damkohler Number[R]. AIAA 2008-4571. [24] Rasmussen C C, Driscoll J F, Carter C D, et al. Characteristics of Cavity-Stabilized Flames in a Supersonic Flow[J]. Journal of Propulsion and Power , 2005, 4(21): 765-768. [25] Rasmussen C C, Dhanuka S K, Driscoll J F. Visualization of Flameholding Mechanisms in a Supersonic Combustor Using PLIF[J]. Proceedings of the Combustion Institute , 2007, (31): 2505–2512. [26] Retaureau G J, Menon S. Experimental Studies on Flame Stability of a Fueled Cavity in a Supersonic Crossflow[R]. AIAA 2010-6718. [27] 谢 伟, 李 萍, 张昌华, 等. 利用OH自由基特征发射谱测量正庚烷的点火延迟时间[J]. 光谱学与光谱分析, 2011, 31 (2):488-491. [28] 王 春, 司徒明, 马继华, 等. 高温富油燃气超声速燃烧数值模拟[J]. 推进技术, 2000, 21(2):60-63. (WANG Chun, SITU Ming, MA Jihua, et al. Numerical Simulation on Supersonic Combustion of Fuel-Rich Hot Gas[J]. Journal of Propulsion Technology , 2000, 21(2):60-63. )