[1] Kumar A, Drummond J P, McClinton C R, et al. Research in Hypersonic Airbreathing Propulsion at the NASA Langley Research Center[R]. ISABE -2001-1007. [2] Bulman M J, Siebenhaar A. The Strutjet Engine: Exploding the Myths Surrounding High Speed Airbreathing Propulsion[R]. AIAA 95-2475. [3] Siebenhaar A, Bulman M J, Norris R, et al. Development and Testing of the Aerojet Strutjet Combustor[R]. AIAA 99-4868. [4] Faulkner R F. Integrated System Test of an Airbreathing Rocket (ISTAR) [R]. AIAA 2001-1812. [5] Quinn J E. ISTAR: Project Status and Ground Test Engine Design[R]. AIAA 2003-5235. [6] Lee J, Krivanek T M. Design and Fabrication of the ISTAR Direct-Connect Combustor Experiment at the NASA Hypersonic Tunnel Facility[R]. AIAA 2005-0611. [7] 王国辉, 何国强, 刘佩进, 等. RBCC引射模态DAB模式二次燃烧数值研究[J]. 固体火箭技术, 2004, 27(1). [8] 刘 洋, 何国强, 刘佩进, 等. RBCC引射/亚燃模态过渡点选择[J]. 固体火箭技术, 2009, 32(5). [9] 潘科玮, 何国强, 秦 飞, 等. 用小支板及凹腔组合提高火箭冲压组合发动机的燃烧性能[J]. 推进技术, 2012, 33(2). (PAN Ke-wei, HE Guo-qiang, QIN fei, et al. Combustion Performance of RBCC Engine with Pylon and Cavity at Ramjet Model[J]. Journal of Propulsion Technology , 2012, 33(2).) [10] 潘科玮, 何国强, 刘佩进, 等. RBCC发动机燃料喷注位置变化对混合燃烧模式燃烧的影响[J]. 航空动力学报, 2011, 26(8). [11] 徐朝启, 何国强, 刘佩进. RBCC发动机亚燃模态一次火箭引导燃烧的实验[J]. 航空动力学报, 2013, 28(3). [12] Kothari A P, Livingston J W, Tarpley C, et al. A Reusable Rocket and Airbreathing Combined Cycle Hypersonic Vehicle Design for Access-to-Space[R]. AIAA 2010-8905. [13] Hueter U. Advanced Reusable Propulsion Technologies Project Overview[R]. AIAA 96-4603. [14] Menter F R. Zonal Two Equation k - ω Turbulence Models for Aerodynamic Flows[R]. AIAA 93-2906. [15] Liou M S. Ten Years in the Making-AUSM-family[R]. AIAA 2001-2521. [16] Yoon S, Jameson A. An LU-SSOR Scheme for the Euler and Navier-Stokes Equations[R]. NASA CR -179556, 1986. [17] 王晓栋, 宋文艳. 支板构型超燃冲压燃烧室流场数值模拟[J]. 推进技术, 2005, 26(1). (WANG Xiao-dong, SONG Wen-yan. Numerical Simulations of Flowfields in a Scramjet Combustor with a Strut[J]. Journal of Propulsion Technology , 2005, 26(1).) [18] Burrows M C, Kurkov A P. Analytical and Experimental Study of Supersonic Combustion of Hydrogen in a Vitiated Airstream[R]. NASA TM X -2828, 1973. [19] Wepler U, Koschel W W. Numerical Investigation of Turbulent Reacting Flows in a Scramjet Combustor Model[R]. AIAA 2002–3572. [20] Mattick S J, Frate F C, Nelson C C. Progress in Validation of Wind-US for Ramjet/Scramjet Combustion [R]. AIAA 2005-1000. [21] Engblom W A, Frankely S H. Numerical Modeling of Supersonic Combustion: Validation and Vitiation Studies Using FLUENT[R]. AIAA 2005-4287. [22] Bhagwandin V A, Engblom W A, Georgiadis N J. Numerical Simulation of a Hydrogen-Fueled Dual-Mode Scramjet Engine Using Wind-US[R]. AIAA 2009-5382. [23] Evans J S, Schexnayder C J. Influence of Chemical Kinetics and Unmixedness on Burning in Supersonic Hydrogen Flames[J]. AIAA Journal , 1979, 18(2): 805-811. [24] Jachimowski C J. An Analysis of Combustion Studies in Shock Expansion Tunnels and Reflected Shock Tunnels[R]. NASA TP -3224, 1992. [25] Jachimowski C J. An Analytical Study of the Hydrogen- Air Reaction Mechanism with Application to Scramjet Combustion[R]. NASA TP -2791, 1988. [26] Westbrook C K. Hydrogen Oxidation Kinetics in Gaseous Detonation[J]. Combustion Science and Technology , 1982, 29: 67-81. [27] Starik A M, Titova N S. Effects of Thermal Nonequilibrium in Combustion[R]. AIAA 99-3637.