Journal of Propulsion Technology ›› 2015, Vol. 36 ›› Issue (6): 876-883.

• Combustion , Heat and Mass Transfer • Previous Articles     Next Articles

Numerical Analysis of Field Synergy Between Velocity Field

  

  1. School of Aircraft Engineering ,Nanchang Hangkong University,Nanchang 330063,China,College of Power and Mechanical Engineering,Shanghai University of Electric Power,Shanghai 200090,China and School of Aircraft Engineering ,Nanchang Hangkong University,Nanchang 330063,China
  • Published:2021-08-15

先进旋涡燃烧室速度场与温度场协同数值研究

王志凯1,曾卓雄2,徐义华1   

  1. 南昌航空大学 飞行器工程学院,江西 南昌 330063,上海电力学院 能源与机械工程学院,上海 200090,南昌航空大学 飞行器工程学院,江西 南昌 330063
  • 作者简介:王志凯(1989—),男,硕士生,研究领域为航空宇航推进理论与工程。E-mail:nhwzk12@126.com 通讯作者:曾卓雄(1972—),男,博士,教授,研究领域为航空宇航推进理论与工程。
  • 基金资助:
    国家自然科学基金项目(51066006;51266013);航空科学基金(2013ZB56002;2013ZB56004);江西省研究生创新基金(YC2014-S397)。

Abstract: In order to investigate the flow and heat transfer characteristics of Advanced Vortex Combustor (AVC)based on field synergy principle,the effects of incoming velocity,incoming temperature,thermostatic wall temperature and equivalent ratio on velocity field,temperature field and the field synergy angle between velocity field and temperature field were numerically calculated. The results show that the smaller synergy angle areas are mainly located in the rear side of the rear blunt body,the cavity and the horizontal central section of the intake passage. Vortex area can enhance heat transfer. With the increase of the incoming velocity and the incoming temperature,the average synergy angle reduces. As the thermostatic wall temperature increases,the average synergy angle increases. When equivalent ratio is less than 1.0,as the equivalent ratio increases,the average synergy angle increases. However,when equivalent ratio is larger than 1.0,the change of synergy angle is not obvious. The field synergy performance is the best in the center section of AVC. The volume-average synergy angles between velocity field and temperature field are larger than the area-average synergy angles.

Key words: Advanced vortex combustor;Field synergy;Heat transfer;Numerical simulation

摘要: 为了探讨先进旋涡燃烧室流动传热特性,基于场协同原理,对不同来流速度、来流温度、壁面温度及燃气当量比下燃烧室的速度场、温度场及其场协同角分布进行了数值模拟。结果表明,协同角较小的区域主要分布在后钝体后侧、凹腔内部以及进气通道横向中心截面上。旋涡区可以强化换热。随着来流速度及来流温度的增大,场平均协同角呈递减趋势;随着壁温的提高,场平均协同角增大;当量比小于1.0时,场平均协同角随着当量比的增大而增大,而达到1.0之后变化不明显。对于速度场与温度场,燃烧室中心截面的场协同性能最好,且体平均协同角大于面平均协同角。

关键词: 先进旋涡燃烧室;场协同;换热;数值模拟