Analysis of Plasma Flow Characteristics under Excitation of Planar Coil in Pulsed Inductive Electric Propulsion
1.PLA 91550 Element 41,Dalian 116023,China;2.State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,Dalian 116024,China;3.Key Laboratory of Advanced Technology for Aerospace Vehicles,Liaoning Province,Dalian University of Technology, Dalian 116024,China
CHENG Yu-guo1,XIA Guang-qing2,3. Analysis of Plasma Flow Characteristics under Excitation of Planar Coil in Pulsed Inductive Electric Propulsion[J]. Journal of Propulsion Technology, 2019, 40(10): 2373-2382.
[1] Mazouffre S, Grimaud L. Characteristics and Performances of a 100W Hall Thruster for Microspacecraft[J]. IEEE Transactions on Plasma Science, 2018, 46(2): 330-337.
[2] 李文博, 胡俊锋, 孙 昊, 等. 电推进空心阴极热子的寿命评估研究[J]. 推进技术, 2017, 38(9): 2146-2151.
[3] Martin A K. 2016 Performance Scaling of Inductive Pulsed Plasma Thrusters with Coil Angle and Pulse Rate[J]. Journal of Physics D:Applied Physics, 2016, 49(2).
[4] Polzin K A. Comprehensive Review of Planar Pulsed Inductive Plasma Thruster Research and Technology[J].Journal of Propulsion and Power, 2011, 27(3): 513-531.
[5] Polzin K A, Sankaran K, Ritchie A G, et al. Inductive Pulsed Plasma Thruster Model with Time-Evolution of Energy and State Properties[J]. Journal of Physics D:Applied Physics, 2013, 46(47).
[6] Lovberg R H, Dailey C L. Current Sheet Development in a Pulsed Inductive Accelerator[R]. AIAA89-2266.
[7] Dailey C L. Pulsed Electromagnetic Thruster[R]. AFRPL-TR-71-107.
[8] Russell D, Poylio J H, Goldstein W, et al. The Mark VI Pulsed Inductive Thruster[R]. AIAA2004-6054.
[9] Dailey C L, Lovberg R H. The PIT MKV Pulsed Inductive Thruster[R]. NASA-CR-191155.
[10] Mikellides P G. An Overview of the MHD Code, MACH[R]. AIAA2007-5614.
[11] Mikellides P G, Neilly C. Modeling and Performance Analysis of the Pulsed Inductive Thruster[J]. Journal of Propulsion and Power, 2007, 23(1): 51-58.
[12] Mikellides P G, Ratnayake N. Modeling of the Pulsed Inductive Thruster Operating with Ammonia Propellant[J]. Journal of Propulsion and Power, 2007, 23(4): 854-862.
[13] Mikellides P G, Villarreal J K. High Energy Pulsed Inductive Thruster Modeling Operating with Ammonia propellant[J]. Journal of Applied Physics, 2007, 102(10).
[14] Kim S, Soogab L, Kim K H. Wavenumber-Extended High-Order Oscillation Control Finite Volume Schemes for Multi-Dimensional Aeroacoustic Computations[J]. Journal of Computational Physics, 2008, 227(8): 4089-4122.
[15] Dedner A, Kemm F, Kroner D, et al. Hyperbolic Divergence Cleaning for the MHD Equations[J]. Journal of Computational Physics, 2002, 175(2): 645-673.
[16] Frese M H. A Two-Dimensional Magnetohydrodynamic Simulation Code for Complex Experimental Configurations[R]. AMRC-R-874.
[17] Murphy A B, Tam E. Thermodynamic Properties and Transport Coefficients of Arc Lamp Plasmas: Argon, Krypton and Xenon[J]. Journal of Physics D:Applied Physics, 2014, 47(29).
[18] Zhang X N, Li H P, Murphy A B, et al. A Numerical Model of Non-Equilibrium Thermal Plasmas. I. Transport Properties[J]. Physics of Plasmas, 2013, 20(3).
[19] Hirschfelder J O, Curtiss C F, Bird R B. Molecular Theory of Gases and Liquids[M]. New York: John Wiley, 1954.
[20] Colonna G, Laricchiuta A. General Number Algorithm for Classical Collision Integral Calculation[J]. Computer Physics Communications, 2008, 178(11): 809-816.
[21] O’Hara H, Smith F J. The Efficient Calculation of the Transport Properties of a Dilute Gas to a Prescribed Accuracy[J]. Journal of Computational Physics, 1970, 5(2): 328-344.
[22] Aziz R A, Slaman M J. The Repulsive Wall of the Ar-Ar Interatomic Potential Reexamined[J]. The Journal of Chemical Physics, 1990, 92(2):1030-1035.
[23] Rat V, André P, Aubreton J, et al. Transport Coefficients Including Diffusion in a Two-temperature Argon Plasma[J]. Journal of Physics D:Applied Physics, 2002, 35(10): 981-991.