Investigation on Interaction Mechanism Between Rim Sealing Flow and Mainstream Flow in High-Pressure Turbine
1.Key Laboratory of Light-Duty Gas-Turbine,Institute of Engineering Thermophysics, Chinese Academy of Sciences,Beijing 100190,China;2.University of Chinese Academy of Sciences,Beijing 100049,China
TAO Wen-can1,2,ZHANG Zi-qing1,2,SONG Yu-kuan1,2,LI Zi-liang1,2,ZHANG Yan-feng1,2. Investigation on Interaction Mechanism Between Rim Sealing Flow and Mainstream Flow in High-Pressure Turbine[J]. Journal of Propulsion Technology, 2019, 40(11): 2473-2481.
[1] McLean C, Camci C, Glezer B. Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage, Part I: Aerodynamic Measurements in the Stationary Frame[J]. Journal of Turbomachinery, 2001, 123 (4): 687-696.
[2] 张晶辉, 马宏伟. 轮缘封严气体对涡轮转子性能影响的非定常数值研究[J]. 推进技术, 2014, 35(4): 470-478. (ZHANG Jing-hui, MA Hong-wei. Unsteady Numerical Investigation for Effects of Rim Sealing Flow on Performance of a Turbine Rotor[J]. Journal of Propulsion Technology, 2014, 35(4): 470-478.)
[3] 刘松龄, 陶 智. 燃气涡轮发动机的传热和空气系统[M]. 上海:上海交通大学出版社, 2018.
[4] Popovi? I, Hodson H P. Improving Turbine Stage Efficiency and Sealing Effectiveness Through Modifications of the Rim Seal Geometry[R]. ASME GT-2012-68026.
[5] Schuler P, Kurz W, Dullenkopf K, et al. The Influence of Different Rim Seal Geometries on Hot-Gas Ingestion and Total Pressure Loss in a Low Pressure Turbine[R]. ASME GT-2010-22205.
[6] Schuler P, Dullenkopf K, Bauer H J. Investigation of the Influence of Different Rim Seal Geometries in a Low Pressure Turbine[R]. ASME GT-2011-45682.
[7] Burd S W, Simon T W. Effects of Slot Bleed Injection over a Contoured Endwall on Nozzle Guide Vane Cooling Performance, Part I: Flow Field Measurements[R]. ASME GT-2000-199.
[8] Schlienger J, Pfau A, Kalfas A I, et al. Effects of Labyrinth Seal Variation on Multistage Axial Turbine Flow[R]. ASME GT-2003-38270.
[9] Bohn D E, Rudzinski B, Suerken N. Influence of Rim Seal Geometry on Hot Gas Ingestion into the Upstream Cavity of an Axial Turbine Stage[R]. ASME GT-1999-248.
[10] 周 杨, 牛为民, 邹正平, 等. 轮毂封严气体对高压涡轮二次流动的影响[J]. 推进技术, 2006, 27(6):515-520.
[11] 张伸展, 温风波, 赵志奇, 等. 高压涡轮封严冷气对主流气动性能的影响[J]. 航空动力学报, 2018, 33(5): 1215-1225.
[12] Hunter S D, Manwaring S R. Endwall Cavity Flow Effects on Gas Path Aerodynamics in an Axial Flow Turbine, Part I: Experimental and Numerical Investigation[R]. ASME GT-2000-651.
[13] McLean C, Camci C, Glezer B. Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage, Part II: Aerodynamic Measurements in the Rotational Frame[J]. Journal of Turbomachinery, 2001, 123 (4): 697-703.
[14] Gier J, Stubert B, Brouillet B, et al. Interaction of Shroud Leakage Flow and the Main Flow in a Threestage LP Turbine[R]. ASME GT-2003-38025.
[15] Popovi? I, Hodson H P. Aerothermal Impact of the Interaction Between Hub Leakage and Mainstream Flows In Highly-Loaded HP Turbine Blades[R]. ASME GT-2010-22311.
[16] T M Horwood Joshua , Hualca Fabian P , Wilson Mike , et al. Unsteady Computation of Ingress Through Turbine Rim Seals[R]. ASME GT-2018-75321.
[17] Rabs M, Benra F K, Dohmen H J, et al. Investigation of Flow Instabilities near the Rim Cavity of a 1.5 Stage Gas Turbine[R]. ASME GT-2009-59965.
[18] Popovi? I, Hodson H P. The Effects of a Parametric Variation of the Rim Seal Geometry on the Interaction Between Hub Leakage and Mainstream Flows in HP Turbines[R]. ASME GT-2012-68025.