Numerical Studies on Effects of V-Shaped Leading Edge on Incident Shock Wave Boundary Layer Interaction
1.School of Mechanical Engineering,Hefei University of Technology,Hefei 230009,China;2.Department of Modern Mechanics,University of Science and Technology of China,Hefei 230027,China
[1] Holger B, Harvey J K, Jean D. Shock Wave Boundary Layer Interactions [M]. Cambridge: Cambridge University Press, 2011.
[2] Anderson G Y, McClinton C R, Weidner J P. Scramjet Performance[M]. Reston: American Institute of Aeronautics and Astronautics, Inc., 2000: 369-446.
[3] Dolling D S. Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next?[J]. AIAA Journal, 2001, 39(8): 1517- 1531.
[4] Gaitonde D V. Progress in Shock Wave/Boundary Layer Interactions[J]. Progress in Aerospace Sciences, 2015, 72(1): 80- 99.
[5] Schülein E. Skin Friction and Heat Flux Measurements in Shock/Boundary Layer Interaction Flows[J]. AIAA Journal, 2006, 44(8): 1732-1741.
[6] Murray N, Hillier R, Williams S. Experimental Investigation of Axisymmetric Hypersonic Shock-Wave/ Turbulent-Boundary-Layer Interactions[J]. Journal of Fluid Mechanics, 2013, 714(1): 152-189.
[7] Korkegi R H. A Simple Correlation for Incipient Turbulent Boundary Layer Separation Due to a Skewed Shock Wave[J]. AIAA Journal, 1973, 11(11): 1578- 1579.
[8] Clemens N T, Narayanaswamy V. Low-Frequency Unsteadiness of Shock Wave/Turbulent Boundary Layer Interactions[J]. Annual Review of Fluid Mechanics, 2014, 46(1): 469- 492.
[9] Wang B, Sandham N D, Hu Z, et al. Numerical Study of Oblique Shock-Wave/Boundary-Layer Interaction Considering Sidewall Effects[J]. Journal of Fluid Mechanics, 2015, 767(3): 526-561.
[10] Eagle W E, Driscoll J F. Shock Wave–Boundary Layer Interactions in Rectangular Inlets: Three-Dimensional Separation Topology and Critical Points[J]. Journal of Fluid Mechanics, 2014, 756(10): 328-353.
[11] Grossman I J, Bruce P K. Effect of Confinement on Shock Wave-Boundary Layer Interactions in Rectangular Intakes[R]. AIAA2016-0348.
[12] Threadgill J S, Staby I, Doehrmannz A. Three- Dimensional Flow Features of Swept Impinging Oblique Shock/Boundary-Layer Interactions[R]. AIAA2017-0759.
[13] Bisek N J. High-Fidelity Simulations of the Hifire-6 Flow Path at Angle of Attack [R]. AIAA2016- 4276.
[14] Steelant J, Varvill R, Defoort S, et al. Achievements Obtained for Sustainted Hypersonic Flight Within the Lapcat-Project[R]. AIAA2015-3677.
[15] Flock A K, Gülhan A. Experimental Investigation of the Starting Behavior of a Three-Dimensional Scramjet Intake[J]. AIAA Journal, 2015, 53(9): 2686-2693.
[16] 金志光, 张堃元. 高超侧压式进气道简单唇口调节方案设计[J]. 推进技术, 2008, 29(1): 43- 48. (JIN Zhi-guang, ZHANG Kun-yuan. Concept of a Varied Geometry Scramjet Inlet with Rotatable Cowl[J]. Journal of Propulsion Technology, 2008, 29(1): 43-48.)
[17] Xiao F S, Li Z F, Zhang Z Y, et al. Hypersonic Shock Wave Interactions on a V-Shaped Blunt Leading Edge [J]. AIAA Journal, 2018, 56 (1): 356-367.
[18] 蒙泽威, 范晓樯, 陶 渊, 等. 三维内收缩式进气道V形溢流口热流计算与分析[J]. 推进技术, 2018, 39(8): 1737-1743.
[19] 张恩来, 李祝飞, 李一鸣, 等. 斜激波入射V形钝前缘溢流口激波干扰研究[J]. 实验流体力学, 2018, 32(3): 50-57.
[20] Li Y M, Li Z F, Yang J M, et al. Visualization of Hypersonic Inward-Turning Inlet Flows by Planar Laser Scattering Method [R]. AIAA2017- 2358.
[21] 王卫星, 郭荣伟. 圆形出口内转式进气道流动特征[J]. 航空学报, 2016, 37(2): 533-544.
[22] Marvin J G, Brown J L, Gnoffo P A. Experimental Database with Baseline CFD Solutions: 2-D and Axisymmetric Hypersonic Shock-Wave/Turbulent-Boundary-Layer Interactions [R]. NASA-TM-2013-216604.
[23] Priebe S, Tu J H, Rowley C W, et al. Low-Frequency Dynamics in a Shock-Induced Separated Flow[J]. Journal of Fluid Mechanics, 2016, 807(11), 441-477.
[24] Giepman R H M, Schrijer F F J, Oudheusden B W. A Parametric Study of Laminar and Transitional Oblique Shock Wave Reflections[J]. Journal of Fluid Mechanics, 2018, 844(6), 187-215.
[25] Panaras A G. Review of the Physics of Swept-Shock/Boundary Layer Interactions[J]. Progress in Aerospace Sciences, 1996, 32(2): 172- 244.
[26] Vanstone L, Musta M N, Seckin S, et al. Experimental Study of the Mean Structure and Quasi-Conical Scaling of a Swept-Compression-Ramp Interaction at Mach 2[J]. Journal of Fluid Mechanics, 2018, 841(4): 1-27.