[1] Lu F K. Prospects for Detonations in Propulsion[C]. Gyeongju: Proceedings of the 9th International Symposium on Experimental and Computational Aerothermodnamics of Internal Flows, 2009.
[2] 归明月, 范宝春. 尖劈诱导的斜爆轰波的精细结构及其影响因素[J]. 推进技术, 2012, 33(3): 490-494. (GUI Ming-yue, FAN Bao-chun. Fine Structure and Its Influence Factor of Wedge-Induced Oblique Detonation Waves[J]. Journal of Propulsion Technology, 2012, 33(3): 490-494.
[3] Choi J Y, Kim D W, Jeung I S, et al. Cell-Like Structure of Unstable Oblique Detonation Wave from High Resolution Numerical Simulation[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2473-2480.
[4] 方宜申, 胡宗民, 滕宏辉, 等. 圆球诱发斜爆轰波的数值研究[J]. 力学学报, 2017, 49(2): 268-273.
[5] Ruegg F W, Dorsey W W. A Missile Technique for the Study of Detonation Waves[J]. Journal of Research of the National Bureau of Standards, 1962, 66: 51-58.
[6] Chernyi G G. Supersonic Flow Around Bodies with Detonationand Deflagration Fronts[J]. Astronautica Acta, 1967, 13: 464-480.
[7] Valentino M, Kauffman C W, Sichel M. Experiments on Shock Induced Combustion of Isolated Regions of Hydrogen-Oxygen Mixtures[R]. AIAA99-821.
[8] Lehr H F. Experiments on Shock-Induced Combution[J]. Astronautica Acta, 1972, 17(4): 589-597.
[9] Youngster S, Eberhardt S, Bruckner A P. Numerical Simulation of Shock-Induced Combustion Generated by High-Speed Projectiles in Detonable Gas Mixtures[R]. AIAA89-0673.
[10] Lee S, Deiwert G S. Calculation of Nonequilibrium Hydrogen-Air Reactions with Implicit Flux Vector Splitting Method[R]. AIAA89-1700.
[11] Kazuya I, Shinji N, Mitsuhiro T. Wedge-Stabilized Oblique Detonation in an Inhomogeneous Hydrogen-Air Mixture[J]. Proceedings of the Combustion Institute,2017, 36: 2761-2769.
[12] Wilson G J, MacCormack R W. Modelling Supesonic Combustion Using a Fully-Implicit Numercal Method[J]. AIAA Journal, 1992, 30(4): 1008-1015.
[13] Choi J Y, Jeung I S, Yoon Y. Numerical Study of Scram-Accelerator Starting Characteristics[J]. AIAA Journal, 1998, 36(6): 1029-1038.
[14] Ahuja J K, Tiwari S N. A Parametric Study of Shock-Induced Combustion in a Hydrogen-Air Sytem[R]. AIAA94-674.
[15] Gordon S, McBride B G. Computer Program for Calculation of Complex Chemical Equilibrium Compositions[R]. NASA-SP-273, 1971.
[16] Stull, D R, Prophet H. JANNAF Therm-Chemical Tables[M]. 2nd ed. USA: National Bureau of Standards, 1971.
[17] Clutter J K, Mikolaitis D W, Shyy W. Effect of Reaction Mechanism in Shock-Induced Combustion Simulations[R]. AIAA98-274.
[18] Campbell C H, Candler G V. A Flux Consistent Implementation of Flux Vector Splitting[R]. AIAA2004-243.
[19] 李恩义, 乐贵高, 马大为, 等. 超声速和高超声速燃烧的数值研究[J]. 弹道学报, 2017, 29(1): 62-67.
[20] 吴 伟. 复杂化学反应流场数值模拟的无网格方法及应用[D]. 南京:南京理工大学, 2015.
[21] 刘 君, 周松柏, 徐春光. 超声速流动中燃烧现象的数值模拟方法及应用[M]. 长沙:国防科技大学出版社, 2008.
[22] Yuan L, Tang T. Resolving the Shock-Induced Combustion by an Adaptive Mesh Redistribution Method[J]. Journal of Computational Physics, 2007, 224: 587-600.
[23] Fusina G, Sislian J, Parent B. Computational Study of Formation and Stability of Standing Oblique Detonation Waves[R]. AIAA2004-1125.
[24] Viguier C, Figueira da S L, Desbordes D, et al. Onset of Oblique Detonation Waves: Comparison Between Experimental and Numerical Results for Hydrogen-Air Mixtures[J]. Symposium (International) on Combustion, 1996, 26(2): 3023-3031.
[25] Li C, Kailasanath K, Oran E. Detonation Structures Behind Oblique Shocks[J]. Physics of Fluids, 1994, 6(4): 1600-1611.