Self-Starting Process of High Mach Number Inlet with Different Boundary Layer Thicknesses
1.Jiangsu Province Key Laboratory of Aerospace Power System,College of Engery and Power Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;2.Military Representative Office of China People’s Liberation Army in Xi’an Aircraft Industry(Group) Company Limited,Xi’an 710089,China
SHI Huan1,XIE Wen-zhong1,LIANG Gang1,JIN Yi1,JING Jian-peng2. Self-Starting Process of High Mach Number Inlet with Different Boundary Layer Thicknesses[J]. Journal of Propulsion Technology, 2019, 40(12): 2684-2693.
[1] Weiting A R. Exploratory Study of Transient Unstart Phenomenon in a Three-Dimensional Fixed-Geometry Scramjet Engine[R]. NASA TND-8156, 1976.
[2] Van Wie D M, Kwok F T, Walsh R F. Starting Characteristics of Supersonic Inlets[R]. AIAA96-2914.
[3] Henry J R, Andrews E HPinckney , , et al. Boundary Layer and Starting Problems on a Short Axisymmetric Scramjet Inlet[R]. NASA SP-216, 1969.
[4] Goldberg T J, Hefner J N. Starting Phenomena for Hypersonic Inlets with Thick Boundary Layers at Mach 6[R]. NASA TN-D6280, 1971.
[5] 王 翼. 高超声速进气道启动问题研究[D]. 长沙:国防科学技术大学, 2008.
[6] 陈卫明. 二元高超声速进气道自起动特性的影响因素分析[D]. 南京:南京航空航天大学, 2013.
[7] 葛 严, 谢文忠, 靖建朋, 等. 内压缩段构型对高超声速进气道自起动性能的影响[J]. 航空动力学报, 2017, 32(5): 1148-1159.
[8] 潘 瑾, 张堃元. 可变内收缩比侧压式进气道自起动性能[J]. 推进技术, 2007, 28(3): 278-281. (PAN Jin, ZHANG Kun-yuan. Self-Starting Characteristics for Sidewall-Compression Inlet with Variable Internal Contraction Ratio[J]. Journal of Propulsion Technology, 2007, 28(3): 278-281.)
[9] Hawkins W R, Marquart E J. Two-Dimensional Generic Inlet Unstart Detection at Mach 2.5~5.0[R]. AIAA95-6016.
[10] Herrmann C, Koschel W. Experimental Investigation of the Internal Compression Inside a Hypersonic Intake[R]. AIAA2002-4130.
[11] 梁德旺, 袁化成, 张晓嘉. 影响高超声速进气道起动能力的因素分析[J]. 宇航学报, 2006, 27(4): 714-719.
[12] 范 轶, 常军涛, 鲍 文. 壁面温度对高超声速进气道不起动/再起动特性的影响[J]. 固体火箭技术, 2009, 32(3): 266-270.
[13] 刘 红. 二元高超声速进气道自起动影响因素研究[C]. 桂林:中国力学学会, 2012.
[14] Zhang Y, Tan H J. Influence of Expansion Waves on Cowl Shock/Boundary Layer Interaction in Hypersonic Inlet[J]. Journal of Propulsion and Power, 2014, 30(5):1183-1191.
[15] Mukerjee T, Martin B W. Turbulent Shear Layer Reattachment Downstream of a Backward-Facing Step in Confined Supersonic Axisymmetric Flow[J]. Journal of Fluid Mechanics, 1969, 39(2): 307-319.
[16] Zhang Y, Tan H J, Tian F C, et al. Control of Incident Shock/Boundary-Layer Interaction by a Two-Dimensional Bump[J]. AIAA Journal, 2014, 52(4): 767-776.
[17] Wang Z G, Zhao Y L, Zhao Y X, et al. Prediction of Massive Separation of Unstarted Inlet via Free-Interaction Theory[J]. AIAA Journal, 2015, 53(4): 1108-1112.
[18] 林 宇, 谢文忠, 张德平, 等. 不起动流场对超声速/高超声速进气道自起动性能的影响[J]. 航空动力学报, 2018, 33(7): 1647-1656.
[19] Souverein L J, Bakker P G, Dupont P. A Scaling Analysis for Turbulent Shock-Wave/Boundary-Layer Interactions[J]. Journal of Fluid Mechanics, 2013, 714(1):505-535.
[20] Délery J, Marvin J G, Reshotko. Shock-Wave Boundary Layer Interactions[M]. Combridge: Combridge University Press, 2011.
[21] Xie W Z, Wu Z M, Yu A Y, et al. Control of Severe Shock-Wave/Boundary-Layer Interactions in Hypersonic Inlets[J]. Journal of Propulsion & Power, 2017, 33(3):1-10.