Study on Enhanced Stability Ability of Self-Circulating Casing Treatment by Blade Tip Bleed Positions
1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710072,China;2.Collaborative Innovation Center of Advanced Aero-Engine,Beijing 100191,China
YAN Song1,CHU Wu-li1,2. Study on Enhanced Stability Ability of Self-Circulating Casing Treatment by Blade Tip Bleed Positions[J]. Journal of Propulsion Technology, 2019, 40(12): 2734-2742.
[1] Smith L H, Griffin R G . Experimental Evaluation of Outer Case Blowing or Bleeding of a Single Stage Axial Flow Compressor, Part I:Design of Rotor Blowing and Bleeding Configurations[R]. NASA CR-54587, 1966.
[2] Smith L H, Koch C C . Experimental Evaluation of Outer Case Blowing or Bleeding of a Single Stage Axial Flow Compressor, Part VI: Final Report[R]. NASA CR-54592, 1970.
[3] Freeman C, Wilson A G, Day I J, et al. Experiments in Active Control of Stall on an Aeroengine Gas Turbine[J]. Journal of Turbomachinery, 1998, 120(4): 637-647.
[4] Hathaway Michael D. Self-Recirculating Casing Treatment Concept for Enhanced Compressor Performance[R]. ASME GT-2002-30368.
[5] Yang H, Nuernberger D, Nicke E, et al. Numerical Investigation of Casing Treatment Mechanisms with a Conservative Mixed-Cell Approach[R]. ASME GT-2003-38483.
[6] Strazisar A J, Bright M M, Thorp Scott , et al. Compressor Stall Control Through Endwall Recirculation[R]. ASME GT-2004-54295.
[7] 张皓光, 楚武利, 吴艳辉, 等. 压气机端壁自适应流通延迟失速的数值分析[J]. 推进技术, 2009, 30(2:202-208.
[8] 张皓光, 楚武利, 吴艳辉, 等. 自适应流通机匣处理改善压气机性能的机理[J]. 推进技术, 2010, 31(3:301-308.
[9] Wang W, Chu W L, Zhang H G, et al. Experimental Study of Self-Recirculating Casing Treatment in a Subsonic Axial Compressor[J]. Journal of Power and Energy, 2016, 230(8): 805-818.
[10] 李继超, 刘 乐, 张宏伟, 等. 低速单级轴流压气机自引气扩稳实验[J]. 航空动力学报, 2012, 27(11: 2577-2584.
[11] Yang Chengwu, Zhao Shengfeng, Lu Xingen, et al. Investigation on Multiple Cylindrical Holes Casing Treatment for Transonic Axial Compressor Stability Enhancement[J]. Journal of Thermal Science, 2014, 23(4): 346-353.
[12] 张皓光, 安 康, 谭 峰, 等. 自循环机匣处理轴向引气位置影响扩稳能力的机理[J]. 航空动力学报, 2017, 32(4): 983-989.
[13] 晏 松, 楚武利, 张皓光, 等. 不同轴向引气位置对自循环机匣的影响研究[J]. 推进技术, 2019, 40(7): 1478-1489.
[14] 吴艳辉, 杨国伟, 王 博, 等. 轴向引气位置对自循环机匣扩稳的能力的影响机制研究[C]. 洛阳:中国航天空天动力联合会议, 2017.
[15] 卢新根. 轴流压气机内部流动失稳及其被动控制策略研究[D]. 西安:西北工业大学, 2007.
[16] 杜 鹃. 跨音压气机/风扇转子叶顶泄漏流动的非定常机制研究[D]. 北京:中国科学院工程热物理研究所, 2010.
[17] 童志庭. 轴流压气机中叶尖泄漏涡、失速先兆、叶尖微喷气非定常关联性的实验研究[D]. 北京:中国科学院工程热物理研究所, 2006.
[18] 李继超. 轴流压气机叶顶微喷气扩稳技术—机理及智能调控[D]. 北京:中国科学院工程热物理研究所, 2012.
[19] 李继超, 林 峰, 刘 乐, 等. 跨音轴流压气机自循环喷气扩稳试验研究[J]. 机械工程学报, 2014, 50(8.