Experimental Investigation for Effects of Mainstream Turbulence on Film Cooling Effectiveness of W-Shaped Film Hole on Suction Side of a Turbine Guide Vane
1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710129,China;2.Shaanxi Key Laboratory of Thermal Sciences in Aero-Engine System,Northwestern Polytechnical University,Xi’an 710129,China
YAO Chun-yi1,ZHU Hui-ren1,2,FU Zhong-yi1,LIU Cun-liang1,2,ZHANG Bo-lun1. Experimental Investigation for Effects of Mainstream Turbulence on Film Cooling Effectiveness of W-Shaped Film Hole on Suction Side of a Turbine Guide Vane[J]. Journal of Propulsion Technology, 2019, 40(12): 2783-2791.
[1] Eriksen V L, Goldstein R J. Heat Transfer and Film Cooling Following Injection Through Inclined Circular Tubes[J]. Journal of Heat Transfer, 1974, 96(2).
[2] Goldstein R J, Eckert E R G, Burggraf F. Effects of Hole Geometry and Density on Three-Dimensional Film Cooling[J]. International Journal of Heat and Mass transfer, 1974, 17(5): 595-607.
[3] Gritsch M, Schulz A, Wittig S. Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes with Expanded Exits[J]. Journal of Turbomachinery, 1998, 120(3): 549-556.
[4] Ames F E. Aspects of Vane Film Cooling with High Turbulence, Part I: Heat Transfer[J]. Journal of Turbomachinery, 1998, 120(4): 768-776.
[5] Marek C J, Tacina R R. Effect of Free-Stream Turbulence on Film Cooling[J]. NASA-TN-D-7958.
[6] Bons J P, Macarthur C D, Rivir R B, et al. The Effect of High Freestream Turbulence on Film Cooling Effectiveness[J]. Journal of Turbomachinery, 1996, 118(4).
[7] Schmidt D L, Bogard D G. Effects of Free-Stream Turbulence and Surface Roughness on Film Cooling[R]. ASME 96-GT-462.
[8] Mayhew J E, Baughn J W, Byerley A R. The Effect of Freestream Turbulence on Film Cooling Adiabatic Effectiveness[J]. International Journal of Heat and Fluid Flow, 2003, 24(5): 669-679.
[9] Burd S W, Kaszeta R W, Simon T W. Measurements in Film Cooling Flows: Hole L/D and Turbulence Intensity Effects[J]. Journal of Turbomachinery, 1998, 120(4): 791-798.
[10] Saumweber C, Schulz A, Wittig S. Free-Stream Turbulence Effects on Film Cooling with Shaped Holes[J]. Journal of Turbomachinery, 2003, 125(1): 65-73.
[11] Wright L M, McClain S T, Clemenson M D. PIV Investigation of the Effect of Freestream Turbulence Intensity on Film Cooling From Fanshaped Holes[R]. ASME GT2011-46127.
[12] Schroeder R P, Thole K A. Thermal Field Measurements for a Shaped Hole at Low and High Freestream Turbulence Intensity[J]. Journal of Turbomachinery, 2017, 139(2).
[13] Schwarz S G, Goldstein R J, Eckert E R G. The Influence of Curvature on Film Cooling Performance[J]. Journal of Turbomachinery, 1991, 113(3): 472-478.
[14] Berhe M K, Patankar S V. Curvature Effects on Discrete-Hole Film Cooling[R]. ASME 98-GT-373.
[15] 周志翔, 刘存良, 张宗卫, 等. 主流湍流度对涡轮导向叶片气膜冷却特性影响的实验[J]. 航空动力学报, 2014, 29(6): 1279-1286.
[16] Xue S, Ng W, Ekkad S, et al. The Performance of Fan-Shaped Hole Film Cooling on a Gas Turbine Blade at Transonic Conditon with High Freestream Turbulence[R]. AIAA2012-0368.
[17] Lee C P, Brassfield, S R, Bunker R S. Chevron Film Cooled Wall[P]. US: 7328580, 2008-02-12.
[18] 刘 聪, 朱惠人, 付仲议, 等. 涡轮导叶吸力面簸箕型孔气膜冷却特性实验研究[J]. 推进技术, 2016, 37(6): 1142-1150.
[19] 朱彦伟. 短周期传热风洞气动特性模拟与控制方法研究[D]. 西安:西北工业大学, 2007.
[20] Moffat R J. Describing the Uncertainties in Experimental Results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17.
[21] Qin Y, Chen P, Ren J, et al. Effects of Wall Curvature and Streamwise Pressure Gradient on Film Cooling Effectiveness[J]. Applied Thermal Engineering, 2016, 107:776-784.
[22] Jones W P, Launder B E. The Prediction of Laminarization with a Two-Equation Model of Turbulence[J]. International Journal of Heat and Mass Transfer, 1972, 15(2): 301-314.
[23] Mayle R E. The Role of Laminar-Turbulent Transition in Gas Turbine Engines[R]. ASME 91-GT-261.