[1] Goodhand M N, Miller R J. The Impact of Real Geometries on Three-Dimensional Separations in Compressors[J]. Journal of Turbomachinery, 2012, 134(2).
[2] 陈 雷, 陈 江, 赵石磊, 等. 叶片前缘形状对涡轮气动性能的影响[J]. 航空动力学报, 2013, 28(4): 921-929.
[3] 杨 炯, 宁 涛, 席 平. 前缘点曲率可控的曲率连续前缘几何设计[J]. 计算机辅助设计与图形学学报, 2016, 28(7): 1195-1200.
[4] 陈 智. 曲率连续前缘对压气机静叶气动性能的影响研究[D]. 大连:大连海事大学, 2018.
[5] Hamakhan I A, Korakianitis T. Aerodynamic Performance Effects of Leading-Edge Geometry in Gas-Turbine Blades[J]. Applied Energy, 2010, 87(5): 1591-1601.
[6] Hodson H P. Boundary-Layer Transition and Separation Near the Leading Edge of a High-Speed Turbine Blade[J]. Journal of Engineering for Gas Turbines and Power, 1985, 107(1): 127-134.
[7] 陆宏志, 吴洋洲, 陆利蓬, 等. 压气机叶片前缘楔形角对前缘分离泡的影响[J]. 工程热物理学报, 2002(5): 569-572.
[8] 陆宏志, 徐力平. 压气机叶片的带平台圆弧形前缘[J]. 推进技术, 2003, 24(6): 532-536. (LU Hong-zhi, XU Li-ping. Circular Leading Edge with a Flat for Compressor Blades[J]. Journal of Propulsion Technology, 2003, 24(6): 532-536.)
[9] Benner M W, Sjolander S A, Moustapha S H. Influence of Leading-Edge Geometry on Profile Losses in Turbines at Off-Design Incidence: Experimental Results and an Improved Correlation[J]. Journal of Turbomachinery, 1997, 119(2): 193-200.
[10] Benner M W, Sjolander S A, Moustapha S H. The Influence of Leading-Edge Geometry on Secondary Losses in a Turbine Cascade at the Design Incidence[J]. Journal of Turbomachinery, 2004, 126(2): 277-287.
[11] Carter A D S. Blade Profiles for Axial Flow Fans, Pumps, Compressors, etc[J]. Proceedings of the Institution of Mechanical Engineers, 1961, 175(1): 775-806.
[12] Walraevens R E, Cumpsty N A. Leading Edge Separation Bubbles on Turbomachine Blades[J]. Journal of Turbomachinery, 1995, 117(1): 115-125.
[13] Wheeler A P S, Sofia A, Miller R J. The Effect of Leading-Edge Geometry on Wake Interactions in Compressors[J]. Journal of Turbomachinery, 2009, 131(4).
[14] Goodhand M N, Miller R J. Compressor Leading Edge Spikes: a New Performance Criterion[J]. Journal of Turbomachinery, 2010, 132(2).
[15] Zhang W, Zou Z, Ye J. Leading-Edge Redesign of a Turbomachinery Blade and Its Effect on Aerodynamic Performance[J]. Applied Energy, 2012, 93: 655-667.
[16] 刘宝杰, 袁春香, 于贤君. 前缘形状对可控扩散叶型性能影响[J]. 推进技术, 2013, 34(7): 890-897. (LIU Bao-jie, YUAN Chun-xiang, YU Xian-jun. Effects of Leading-Edge Geometry on Aerodynamic Performance in Controlled Diffusion Airfoil[J]. Journal of Propulsion Technology, 2013, 34(7): 890-897.)
[17] 宋 寅, 顾春伟. 曲率连续的压气机叶片前缘设计方法[J]. 推进技术, 2013, 34(11): 1474-1481. (SONG Yin, GU Chun-wei. Effects of Leading-Edge Geometry on Aerodynamic Performance in Controlled Diffusion Airfoil[J]. Journal of Propulsion Technology, 2013, 34(11): 1474-1481.)
[18] Song Y, Gu C W, Xiao Y B. Numerical and Theoretical Investigations Concerning the Continuous-Surface-Curvature Effect in Compressor Blades[J]. Energies, 2014, 7: 8150-8177.
[19] Song Y, Gu C W. Effects of Curvature Continuity of Compressor Blade Profiles on Their Performances[R]. ASME GT2014-25804.
[20] 白 涛, 邹正平, 张伟昊, 等. 前缘形状对涡轮叶栅损失影响的机理[J]. 航空动力学报, 2014, 29(6): 1482-1489.
[21] 张小龙, 姜 斌, 郑 群, 等. 压气机叶片前缘形状与局部损失相关性[J]. 哈尔滨工程大学学报, 2015, 36(4).
[22] 于贤君, 朱宏伟, 刘宝杰. 亚音叶型前缘形状对附面层参数影响[J]. 工程热物理学报, 2017, 38(10): 2108-2118.
[23] 杨 凌, 李勇俊, 钟兢军. 前缘复合改型在压气机平面叶栅中的应用初探[J]. 推进技术, 2019, 40(1): 121-128. (YANG Ling, LI Yong-jun, ZHONG Jing-jun. Preliminary Investigation of Elliptic Tubercle Leading Edge Blade in Planar Compressor Cascade[J]. Journal of Propulsion Technology, 2019, 40(1): 121-128.)
[24] Pritchard L J. An Eleven Parameter Axial Turbine Airfoil Geometry Model[R]. ASME 85-GT-219.
[25] Kulfan B M, Bussoletti J E. Fundamental Parametric Geometry Representations for Aircraft Component Shapes[R]. AIAA2006-6948.
[26] Kulfan B M. A Universal Parametric Geometry Representation Method-“CST”[R]. AIAA2007-62.
[27] Hodson H P, Dominy R G. The Off-Design Performance of a Low-Pressure Turbine Cascade[J]. Journal of Turbomachinery, 1987, 109(2): 201-209.
[28] Hodson H P, Dominy R G. Three-Dimensional Flow in a Low-Pressure Turbine Cascade at Its Design Condition[J]. Journal of Turbomachinery, 1987, 109(2): 177-185.
[29] 朱俊强, 屈 骁, 张燕峰, 等. 高负荷低压涡轮内部非定常流动机理及其控制策略研究进展[J]. 推进技术, 2017, 38(10): 2186-2199.
[30] Howard P H, Robert J H. The Role of Transition in High-Lift Low-Pressure Turbines for Aeroengines[J]. Progress in Aerospace Sciences, 2005, 41(6): 419-454.
[31] Mayle R E. The Role of Laminar-Turbulent Transition in Gas Turbine Engines [J]. Journal of Turbomachinery, 1991, 113(2): 207-216.
[32] 张银波, 郑 伟. 雷诺数对低压涡轮附面层转捩影响的数值研究[J]. 燃气涡轮试验与研究, 2015, 28(2).
[33] 邹正平, 宁方飞, 刘火星, 等. 雷诺数对涡轮叶栅流动的影响[J]. 工程热物理学报, 2004, (2): 216-219.
[34] 梁 赟, 刘火星, 邹正平. 高负荷低压涡轮边界层转捩的实验研究[J]. 推进技术, 2017, 38(5): 1023-1029. (LIANG Yun, LIU Huo-xing, ZOU Zheng-ping. Experimental Investigation on Boundary Layer Transition Process in High-Lift Low-Pressure Turbines[J]. Journal of Propulsion Technology, 2017, 38(5): 1023-1029.)
[35] 冯 涛, 程洪贵, 杨 琳, 等. 边界层特性对雷诺数变化的敏感性分析[J]. 推进技术, 2005, 26(4): 328-334.
[36] Curtis E M, Hodson H P, Banieghbal M R, et al. Development of Blade Profiles for Low-Pressure Turbine Applications[J]. Journal of Turbomachinery, 1997, 119(3): 531-538.
[37] Denton J D. Loss Mechanisms in Turbomachines[J]. Journal of Turbomachinery, 1993, 115(4): 621-656.
[38] Li Z, Du J, Ottavy X, et al. Quantification and Analysis of the Irreversible Flow Loss in a Linear Compressor Cascade[J]. Entropy, 2018, 20(7).
[39] Kock F, Herwig H. Entropy Production Calculation for Turbulent Shear Flows and Their Implementation in CFD Codes[J]. International Journal of Heat and Fluid Flow, 2005, 26(4): 672-680.
[40] Greitzer E M, Graf M B, Tan C S, et al. Internal Flow: Concepts and Applications[M]. Cambridge: Cambridge University Press, 2007.